PlayGround
<html xmlns:v=“urn:schemas-microsoft-com:vml” xmlns:o=“urn:schemas-microsoft-com:office:office” xmlns:w=“urn:schemas-microsoft-com:office:word” xmlns:dt=“uuid:C2F41010-65B3-11d1-A29F-00AA00C14882” xmlns:m=“http://schemas.microsoft.com/office/2004/12/omml” xmlns=“http://www.w3.org/TR/REC-html40”><head><meta http-equiv=Content-Type content=“text/html; charset=windows-1252”><meta name=ProgId content=Word.Document><meta name=Generator content=“Microsoft Word 15”><meta name=Originator content=“Microsoft Word 15”><link rel=File-List href=“Wiki%20Draft%20(1)_files/filelist.xml”><link rel=Edit-Time-Data href=“Wiki%20Draft%20(1)_files/editdata.mso”><!–[if !mso]><style> v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} </style><![endif]–><!–[if gte mso 9]><xml><o:CustomDocumentProperties><o:ZOTERO_PREF_1 dt:dt=“string”><data data-version=“3” zotero-version=“6.0.20”><session id=“bFb6WQcK”/><style id=“http://www.zotero.org/styles/vancouver-superscript” locale=“en-GB” hasBibliography=“1” bibliographyStyleHasBeenSet=“0”/><prefs><pref name=“fieldType” value=“Field”/><pref na</o:ZOTERO_PREF_1><o:ZOTERO_PREF_2 dt:dt=“string”>me=“automaticJournalAbbreviations” value=“true”/></prefs></data></o:ZOTERO_PREF_2><o:ContentTypeId dt:dt=“string”>0x01010065B13F740B157D4F863C7A3FE966D8E7</o:ContentTypeId></o:CustomDocumentProperties></xml><![endif]–><link rel=dataStoreItem href=“Wiki%20Draft%20(1)_files/item0001.xml” target=“Wiki%20Draft%20(1)_files/props002.xml”><link rel=dataStoreItem href=“Wiki%20Draft%20(1)_files/item0003.xml” target=“Wiki%20Draft%20(1)_files/props004.xml”><link rel=dataStoreItem href=“Wiki%20Draft%20(1)_files/item0005.xml” target=“Wiki%20Draft%20(1)_files/props006.xml”><link rel=themeData href=“Wiki%20Draft%20(1)_files/themedata.thmx”><link rel=colorSchemeMapping href=“Wiki%20Draft%20(1)_files/colorschememapping.xml”><!–[if gte mso 9]><xml><w:WordDocument><w:SpellingState>Clean</w:SpellingState><w:GrammarState>Clean</w:GrammarState><w:TrackMoves>false</w:TrackMoves><w:TrackFormatting/><w:PunctuationKerning/><w:ValidateAgainstSchemas/><w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid><w:IgnoreMixedContent>false</w:IgnoreMixedContent><w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText><w:DoNotPromoteQF/><w:LidThemeOther>EN-CA</w:LidThemeOther><w:LidThemeAsian>X-NONE</w:LidThemeAsian><w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript><w:Compatibility><w:BreakWrappedTables/><w:SnapToGridInCell/><w:WrapTextWithPunct/><w:UseAsianBreakRules/><w:DontGrowAutofit/><w:SplitPgBreakAndParaMark/><w:EnableOpenTypeKerning/><w:DontFlipMirrorIndents/><w:OverrideTableStyleHps/></w:Compatibility><w:DoNotOptimizeForBrowser/><m:mathPr><m:mathFont m:val=“Cambria Math”/><m:brkBin m:val=“before”/><m:brkBinSub m:val=“–”/><m:smallFrac m:val=“off”/><m:dispDef/><m:lMargin m:val=“0”/><m:rMargin m:val=“0”/><m:defJc m:val=“centerGroup”/><m:wrapIndent m:val=“1440”/><m:intLim m:val=“subSup”/><m:naryLim m:val=“undOvr”/></m:mathPr></w:WordDocument></xml><![endif]–><!–[if gte mso 9]><xml><w:LatentStyles DefLockedState=“false” DefUnhideWhenUsed=“false” DefSemiHidden=“false” DefQFormat=“false” DefPriority=“99” LatentStyleCount=“376”><w:LsdException Locked=“false” Priority=“0” QFormat=“true” Name=“Normal”/><w:LsdException Locked=“false” Priority=“9” QFormat=“true” Name=“heading 1”/><w:LsdException Locked=“false” Priority=“9” SemiHidden=“true” UnhideWhenUsed=“true” QFormat=“true” Name=“heading 2”/><w:LsdException Locked=“false” Priority=“9” SemiHidden=“true” UnhideWhenUsed=“true” QFormat=“true” Name=“heading 3”/><w:LsdException Locked=“false” Priority=“9” SemiHidden=“true” UnhideWhenUsed=“true” QFormat=“true” Name=“heading 4”/><w:LsdException Locked=“false” Priority=“9” SemiHidden=“true” UnhideWhenUsed=“true” QFormat=“true” Name=“heading 5”/><w:LsdException Locked=“false” Priority=“9” SemiHidden=“true” UnhideWhenUsed=“true” QFormat=“true” Name=“heading 6”/><w:LsdException Locked=“false” Priority=“9” SemiHidden=“true” UnhideWhenUsed=“true” QFormat=“true” Name=“heading 7”/><w:LsdException Locked=“false” Priority=“9” SemiHidden=“true” UnhideWhenUsed=“true” QFormat=“true” Name=“heading 8”/><w:LsdException Locked=“false” Priority=“9” SemiHidden=“true” UnhideWhenUsed=“true” QFormat=“true” Name=“heading 9”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“index 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“index 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“index 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“index 4”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“index 5”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“index 6”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“index 7”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“index 8”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“index 9”/><w:LsdException Locked=“false” Priority=“39” SemiHidden=“true” UnhideWhenUsed=“true” Name=“toc 1”/><w:LsdException Locked=“false” Priority=“39” SemiHidden=“true” UnhideWhenUsed=“true” Name=“toc 2”/><w:LsdException Locked=“false” Priority=“39” SemiHidden=“true” UnhideWhenUsed=“true” Name=“toc 3”/><w:LsdException Locked=“false” Priority=“39” SemiHidden=“true” UnhideWhenUsed=“true” Name=“toc 4”/><w:LsdException Locked=“false” Priority=“39” SemiHidden=“true” UnhideWhenUsed=“true” Name=“toc 5”/><w:LsdException Locked=“false” Priority=“39” SemiHidden=“true” UnhideWhenUsed=“true” Name=“toc 6”/><w:LsdException Locked=“false” Priority=“39” SemiHidden=“true” UnhideWhenUsed=“true” Name=“toc 7”/><w:LsdException Locked=“false” Priority=“39” SemiHidden=“true” UnhideWhenUsed=“true” Name=“toc 8”/><w:LsdException Locked=“false” Priority=“39” SemiHidden=“true” UnhideWhenUsed=“true” Name=“toc 9”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Normal Indent”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“footnote text”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“annotation text”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“header”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“footer”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“index heading”/><w:LsdException Locked=“false” Priority=“35” SemiHidden=“true” UnhideWhenUsed=“true” QFormat=“true” Name=“caption”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“table of figures”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“envelope address”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“envelope return”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“footnote reference”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“annotation reference”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“line number”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“page number”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“endnote reference”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“endnote text”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“table of authorities”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“macro”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“toa heading”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Bullet”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Number”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List 4”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List 5”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Bullet 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Bullet 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Bullet 4”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Bullet 5”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Number 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Number 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Number 4”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Number 5”/><w:LsdException Locked=“false” Priority=“10” QFormat=“true” Name=“Title”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Closing”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Signature”/><w:LsdException Locked=“false” Priority=“1” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Default Paragraph Font”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Body Text”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Body Text Indent”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Continue”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Continue 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Continue 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Continue 4”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“List Continue 5”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Message Header”/><w:LsdException Locked=“false” Priority=“11” QFormat=“true” Name=“Subtitle”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Salutation”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Date”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Body Text First Indent”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Body Text First Indent 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Note Heading”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Body Text 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Body Text 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Body Text Indent 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Body Text Indent 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Block Text”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Hyperlink”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“FollowedHyperlink”/><w:LsdException Locked=“false” Priority=“22” QFormat=“true” Name=“Strong”/><w:LsdException Locked=“false” Priority=“20” QFormat=“true” Name=“Emphasis”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Document Map”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Plain Text”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“E-mail Signature”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Top of Form”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Bottom of Form”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Normal (Web)”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Acronym”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Address”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Cite”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Code”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Definition”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Keyboard”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Preformatted”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Sample”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Typewriter”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“HTML Variable”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Normal Table”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“annotation subject”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“No List”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Outline List 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Outline List 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Outline List 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Simple 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Simple 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Simple 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Classic 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Classic 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Classic 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Classic 4”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Colorful 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Colorful 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Colorful 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Columns 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Columns 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Columns 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Columns 4”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Columns 5”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Grid 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Grid 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Grid 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Grid 4”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Grid 5”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Grid 6”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Grid 7”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Grid 8”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table List 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table List 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table List 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table List 4”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table List 5”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table List 6”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table List 7”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table List 8”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table 3D effects 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table 3D effects 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table 3D effects 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Contemporary”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Elegant”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Professional”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Subtle 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Subtle 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Web 1”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Web 2”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Web 3”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Balloon Text”/><w:LsdException Locked=“false” Priority=“39” Name=“Table Grid”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Table Theme”/><w:LsdException Locked=“false” SemiHidden=“true” Name=“Placeholder Text”/><w:LsdException Locked=“false” Priority=“1” QFormat=“true” Name=“No Spacing”/><w:LsdException Locked=“false” Priority=“60” Name=“Light Shading”/><w:LsdException Locked=“false” Priority=“61” Name=“Light List”/><w:LsdException Locked=“false” Priority=“62” Name=“Light Grid”/><w:LsdException Locked=“false” Priority=“63” Name=“Medium Shading 1”/><w:LsdException Locked=“false” Priority=“64” Name=“Medium Shading 2”/><w:LsdException Locked=“false” Priority=“65” Name=“Medium List 1”/><w:LsdException Locked=“false” Priority=“66” Name=“Medium List 2”/><w:LsdException Locked=“false” Priority=“67” Name=“Medium Grid 1”/><w:LsdException Locked=“false” Priority=“68” Name=“Medium Grid 2”/><w:LsdException Locked=“false” Priority=“69” Name=“Medium Grid 3”/><w:LsdException Locked=“false” Priority=“70” Name=“Dark List”/><w:LsdException Locked=“false” Priority=“71” Name=“Colorful Shading”/><w:LsdException Locked=“false” Priority=“72” Name=“Colorful List”/><w:LsdException Locked=“false” Priority=“73” Name=“Colorful Grid”/><w:LsdException Locked=“false” Priority=“60” Name=“Light Shading Accent 1”/><w:LsdException Locked=“false” Priority=“61” Name=“Light List Accent 1”/><w:LsdException Locked=“false” Priority=“62” Name=“Light Grid Accent 1”/><w:LsdException Locked=“false” Priority=“63” Name=“Medium Shading 1 Accent 1”/><w:LsdException Locked=“false” Priority=“64” Name=“Medium Shading 2 Accent 1”/><w:LsdException Locked=“false” Priority=“65” Name=“Medium List 1 Accent 1”/><w:LsdException Locked=“false” SemiHidden=“true” Name=“Revision”/><w:LsdException Locked=“false” Priority=“34” QFormat=“true” Name=“List Paragraph”/><w:LsdException Locked=“false” Priority=“29” QFormat=“true” Name=“Quote”/><w:LsdException Locked=“false” Priority=“30” QFormat=“true” Name=“Intense Quote”/><w:LsdException Locked=“false” Priority=“66” Name=“Medium List 2 Accent 1”/><w:LsdException Locked=“false” Priority=“67” Name=“Medium Grid 1 Accent 1”/><w:LsdException Locked=“false” Priority=“68” Name=“Medium Grid 2 Accent 1”/><w:LsdException Locked=“false” Priority=“69” Name=“Medium Grid 3 Accent 1”/><w:LsdException Locked=“false” Priority=“70” Name=“Dark List Accent 1”/><w:LsdException Locked=“false” Priority=“71” Name=“Colorful Shading Accent 1”/><w:LsdException Locked=“false” Priority=“72” Name=“Colorful List Accent 1”/><w:LsdException Locked=“false” Priority=“73” Name=“Colorful Grid Accent 1”/><w:LsdException Locked=“false” Priority=“60” Name=“Light Shading Accent 2”/><w:LsdException Locked=“false” Priority=“61” Name=“Light List Accent 2”/><w:LsdException Locked=“false” Priority=“62” Name=“Light Grid Accent 2”/><w:LsdException Locked=“false” Priority=“63” Name=“Medium Shading 1 Accent 2”/><w:LsdException Locked=“false” Priority=“64” Name=“Medium Shading 2 Accent 2”/><w:LsdException Locked=“false” Priority=“65” Name=“Medium List 1 Accent 2”/><w:LsdException Locked=“false” Priority=“66” Name=“Medium List 2 Accent 2”/><w:LsdException Locked=“false” Priority=“67” Name=“Medium Grid 1 Accent 2”/><w:LsdException Locked=“false” Priority=“68” Name=“Medium Grid 2 Accent 2”/><w:LsdException Locked=“false” Priority=“69” Name=“Medium Grid 3 Accent 2”/><w:LsdException Locked=“false” Priority=“70” Name=“Dark List Accent 2”/><w:LsdException Locked=“false” Priority=“71” Name=“Colorful Shading Accent 2”/><w:LsdException Locked=“false” Priority=“72” Name=“Colorful List Accent 2”/><w:LsdException Locked=“false” Priority=“73” Name=“Colorful Grid Accent 2”/><w:LsdException Locked=“false” Priority=“60” Name=“Light Shading Accent 3”/><w:LsdException Locked=“false” Priority=“61” Name=“Light List Accent 3”/><w:LsdException Locked=“false” Priority=“62” Name=“Light Grid Accent 3”/><w:LsdException Locked=“false” Priority=“63” Name=“Medium Shading 1 Accent 3”/><w:LsdException Locked=“false” Priority=“64” Name=“Medium Shading 2 Accent 3”/><w:LsdException Locked=“false” Priority=“65” Name=“Medium List 1 Accent 3”/><w:LsdException Locked=“false” Priority=“66” Name=“Medium List 2 Accent 3”/><w:LsdException Locked=“false” Priority=“67” Name=“Medium Grid 1 Accent 3”/><w:LsdException Locked=“false” Priority=“68” Name=“Medium Grid 2 Accent 3”/><w:LsdException Locked=“false” Priority=“69” Name=“Medium Grid 3 Accent 3”/><w:LsdException Locked=“false” Priority=“70” Name=“Dark List Accent 3”/><w:LsdException Locked=“false” Priority=“71” Name=“Colorful Shading Accent 3”/><w:LsdException Locked=“false” Priority=“72” Name=“Colorful List Accent 3”/><w:LsdException Locked=“false” Priority=“73” Name=“Colorful Grid Accent 3”/><w:LsdException Locked=“false” Priority=“60” Name=“Light Shading Accent 4”/><w:LsdException Locked=“false” Priority=“61” Name=“Light List Accent 4”/><w:LsdException Locked=“false” Priority=“62” Name=“Light Grid Accent 4”/><w:LsdException Locked=“false” Priority=“63” Name=“Medium Shading 1 Accent 4”/><w:LsdException Locked=“false” Priority=“64” Name=“Medium Shading 2 Accent 4”/><w:LsdException Locked=“false” Priority=“65” Name=“Medium List 1 Accent 4”/><w:LsdException Locked=“false” Priority=“66” Name=“Medium List 2 Accent 4”/><w:LsdException Locked=“false” Priority=“67” Name=“Medium Grid 1 Accent 4”/><w:LsdException Locked=“false” Priority=“68” Name=“Medium Grid 2 Accent 4”/><w:LsdException Locked=“false” Priority=“69” Name=“Medium Grid 3 Accent 4”/><w:LsdException Locked=“false” Priority=“70” Name=“Dark List Accent 4”/><w:LsdException Locked=“false” Priority=“71” Name=“Colorful Shading Accent 4”/><w:LsdException Locked=“false” Priority=“72” Name=“Colorful List Accent 4”/><w:LsdException Locked=“false” Priority=“73” Name=“Colorful Grid Accent 4”/><w:LsdException Locked=“false” Priority=“60” Name=“Light Shading Accent 5”/><w:LsdException Locked=“false” Priority=“61” Name=“Light List Accent 5”/><w:LsdException Locked=“false” Priority=“62” Name=“Light Grid Accent 5”/><w:LsdException Locked=“false” Priority=“63” Name=“Medium Shading 1 Accent 5”/><w:LsdException Locked=“false” Priority=“64” Name=“Medium Shading 2 Accent 5”/><w:LsdException Locked=“false” Priority=“65” Name=“Medium List 1 Accent 5”/><w:LsdException Locked=“false” Priority=“66” Name=“Medium List 2 Accent 5”/><w:LsdException Locked=“false” Priority=“67” Name=“Medium Grid 1 Accent 5”/><w:LsdException Locked=“false” Priority=“68” Name=“Medium Grid 2 Accent 5”/><w:LsdException Locked=“false” Priority=“69” Name=“Medium Grid 3 Accent 5”/><w:LsdException Locked=“false” Priority=“70” Name=“Dark List Accent 5”/><w:LsdException Locked=“false” Priority=“71” Name=“Colorful Shading Accent 5”/><w:LsdException Locked=“false” Priority=“72” Name=“Colorful List Accent 5”/><w:LsdException Locked=“false” Priority=“73” Name=“Colorful Grid Accent 5”/><w:LsdException Locked=“false” Priority=“60” Name=“Light Shading Accent 6”/><w:LsdException Locked=“false” Priority=“61” Name=“Light List Accent 6”/><w:LsdException Locked=“false” Priority=“62” Name=“Light Grid Accent 6”/><w:LsdException Locked=“false” Priority=“63” Name=“Medium Shading 1 Accent 6”/><w:LsdException Locked=“false” Priority=“64” Name=“Medium Shading 2 Accent 6”/><w:LsdException Locked=“false” Priority=“65” Name=“Medium List 1 Accent 6”/><w:LsdException Locked=“false” Priority=“66” Name=“Medium List 2 Accent 6”/><w:LsdException Locked=“false” Priority=“67” Name=“Medium Grid 1 Accent 6”/><w:LsdException Locked=“false” Priority=“68” Name=“Medium Grid 2 Accent 6”/><w:LsdException Locked=“false” Priority=“69” Name=“Medium Grid 3 Accent 6”/><w:LsdException Locked=“false” Priority=“70” Name=“Dark List Accent 6”/><w:LsdException Locked=“false” Priority=“71” Name=“Colorful Shading Accent 6”/><w:LsdException Locked=“false” Priority=“72” Name=“Colorful List Accent 6”/><w:LsdException Locked=“false” Priority=“73” Name=“Colorful Grid Accent 6”/><w:LsdException Locked=“false” Priority=“19” QFormat=“true” Name=“Subtle Emphasis”/><w:LsdException Locked=“false” Priority=“21” QFormat=“true” Name=“Intense Emphasis”/><w:LsdException Locked=“false” Priority=“31” QFormat=“true” Name=“Subtle Reference”/><w:LsdException Locked=“false” Priority=“32” QFormat=“true” Name=“Intense Reference”/><w:LsdException Locked=“false” Priority=“33” QFormat=“true” Name=“Book Title”/><w:LsdException Locked=“false” Priority=“37” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Bibliography”/><w:LsdException Locked=“false” Priority=“39” SemiHidden=“true” UnhideWhenUsed=“true” QFormat=“true” Name=“TOC Heading”/><w:LsdException Locked=“false” Priority=“41” Name=“Plain Table 1”/><w:LsdException Locked=“false” Priority=“42” Name=“Plain Table 2”/><w:LsdException Locked=“false” Priority=“43” Name=“Plain Table 3”/><w:LsdException Locked=“false” Priority=“44” Name=“Plain Table 4”/><w:LsdException Locked=“false” Priority=“45” Name=“Plain Table 5”/><w:LsdException Locked=“false” Priority=“40” Name=“Grid Table Light”/><w:LsdException Locked=“false” Priority=“46” Name=“Grid Table 1 Light”/><w:LsdException Locked=“false” Priority=“47” Name=“Grid Table 2”/><w:LsdException Locked=“false” Priority=“48” Name=“Grid Table 3”/><w:LsdException Locked=“false” Priority=“49” Name=“Grid Table 4”/><w:LsdException Locked=“false” Priority=“50” Name=“Grid Table 5 Dark”/><w:LsdException Locked=“false” Priority=“51” Name=“Grid Table 6 Colorful”/><w:LsdException Locked=“false” Priority=“52” Name=“Grid Table 7 Colorful”/><w:LsdException Locked=“false” Priority=“46” Name=“Grid Table 1 Light Accent 1”/><w:LsdException Locked=“false” Priority=“47” Name=“Grid Table 2 Accent 1”/><w:LsdException Locked=“false” Priority=“48” Name=“Grid Table 3 Accent 1”/><w:LsdException Locked=“false” Priority=“49” Name=“Grid Table 4 Accent 1”/><w:LsdException Locked=“false” Priority=“50” Name=“Grid Table 5 Dark Accent 1”/><w:LsdException Locked=“false” Priority=“51” Name=“Grid Table 6 Colorful Accent 1”/><w:LsdException Locked=“false” Priority=“52” Name=“Grid Table 7 Colorful Accent 1”/><w:LsdException Locked=“false” Priority=“46” Name=“Grid Table 1 Light Accent 2”/><w:LsdException Locked=“false” Priority=“47” Name=“Grid Table 2 Accent 2”/><w:LsdException Locked=“false” Priority=“48” Name=“Grid Table 3 Accent 2”/><w:LsdException Locked=“false” Priority=“49” Name=“Grid Table 4 Accent 2”/><w:LsdException Locked=“false” Priority=“50” Name=“Grid Table 5 Dark Accent 2”/><w:LsdException Locked=“false” Priority=“51” Name=“Grid Table 6 Colorful Accent 2”/><w:LsdException Locked=“false” Priority=“52” Name=“Grid Table 7 Colorful Accent 2”/><w:LsdException Locked=“false” Priority=“46” Name=“Grid Table 1 Light Accent 3”/><w:LsdException Locked=“false” Priority=“47” Name=“Grid Table 2 Accent 3”/><w:LsdException Locked=“false” Priority=“48” Name=“Grid Table 3 Accent 3”/><w:LsdException Locked=“false” Priority=“49” Name=“Grid Table 4 Accent 3”/><w:LsdException Locked=“false” Priority=“50” Name=“Grid Table 5 Dark Accent 3”/><w:LsdException Locked=“false” Priority=“51” Name=“Grid Table 6 Colorful Accent 3”/><w:LsdException Locked=“false” Priority=“52” Name=“Grid Table 7 Colorful Accent 3”/><w:LsdException Locked=“false” Priority=“46” Name=“Grid Table 1 Light Accent 4”/><w:LsdException Locked=“false” Priority=“47” Name=“Grid Table 2 Accent 4”/><w:LsdException Locked=“false” Priority=“48” Name=“Grid Table 3 Accent 4”/><w:LsdException Locked=“false” Priority=“49” Name=“Grid Table 4 Accent 4”/><w:LsdException Locked=“false” Priority=“50” Name=“Grid Table 5 Dark Accent 4”/><w:LsdException Locked=“false” Priority=“51” Name=“Grid Table 6 Colorful Accent 4”/><w:LsdException Locked=“false” Priority=“52” Name=“Grid Table 7 Colorful Accent 4”/><w:LsdException Locked=“false” Priority=“46” Name=“Grid Table 1 Light Accent 5”/><w:LsdException Locked=“false” Priority=“47” Name=“Grid Table 2 Accent 5”/><w:LsdException Locked=“false” Priority=“48” Name=“Grid Table 3 Accent 5”/><w:LsdException Locked=“false” Priority=“49” Name=“Grid Table 4 Accent 5”/><w:LsdException Locked=“false” Priority=“50” Name=“Grid Table 5 Dark Accent 5”/><w:LsdException Locked=“false” Priority=“51” Name=“Grid Table 6 Colorful Accent 5”/><w:LsdException Locked=“false” Priority=“52” Name=“Grid Table 7 Colorful Accent 5”/><w:LsdException Locked=“false” Priority=“46” Name=“Grid Table 1 Light Accent 6”/><w:LsdException Locked=“false” Priority=“47” Name=“Grid Table 2 Accent 6”/><w:LsdException Locked=“false” Priority=“48” Name=“Grid Table 3 Accent 6”/><w:LsdException Locked=“false” Priority=“49” Name=“Grid Table 4 Accent 6”/><w:LsdException Locked=“false” Priority=“50” Name=“Grid Table 5 Dark Accent 6”/><w:LsdException Locked=“false” Priority=“51” Name=“Grid Table 6 Colorful Accent 6”/><w:LsdException Locked=“false” Priority=“52” Name=“Grid Table 7 Colorful Accent 6”/><w:LsdException Locked=“false” Priority=“46” Name=“List Table 1 Light”/><w:LsdException Locked=“false” Priority=“47” Name=“List Table 2”/><w:LsdException Locked=“false” Priority=“48” Name=“List Table 3”/><w:LsdException Locked=“false” Priority=“49” Name=“List Table 4”/><w:LsdException Locked=“false” Priority=“50” Name=“List Table 5 Dark”/><w:LsdException Locked=“false” Priority=“51” Name=“List Table 6 Colorful”/><w:LsdException Locked=“false” Priority=“52” Name=“List Table 7 Colorful”/><w:LsdException Locked=“false” Priority=“46” Name=“List Table 1 Light Accent 1”/><w:LsdException Locked=“false” Priority=“47” Name=“List Table 2 Accent 1”/><w:LsdException Locked=“false” Priority=“48” Name=“List Table 3 Accent 1”/><w:LsdException Locked=“false” Priority=“49” Name=“List Table 4 Accent 1”/><w:LsdException Locked=“false” Priority=“50” Name=“List Table 5 Dark Accent 1”/><w:LsdException Locked=“false” Priority=“51” Name=“List Table 6 Colorful Accent 1”/><w:LsdException Locked=“false” Priority=“52” Name=“List Table 7 Colorful Accent 1”/><w:LsdException Locked=“false” Priority=“46” Name=“List Table 1 Light Accent 2”/><w:LsdException Locked=“false” Priority=“47” Name=“List Table 2 Accent 2”/><w:LsdException Locked=“false” Priority=“48” Name=“List Table 3 Accent 2”/><w:LsdException Locked=“false” Priority=“49” Name=“List Table 4 Accent 2”/><w:LsdException Locked=“false” Priority=“50” Name=“List Table 5 Dark Accent 2”/><w:LsdException Locked=“false” Priority=“51” Name=“List Table 6 Colorful Accent 2”/><w:LsdException Locked=“false” Priority=“52” Name=“List Table 7 Colorful Accent 2”/><w:LsdException Locked=“false” Priority=“46” Name=“List Table 1 Light Accent 3”/><w:LsdException Locked=“false” Priority=“47” Name=“List Table 2 Accent 3”/><w:LsdException Locked=“false” Priority=“48” Name=“List Table 3 Accent 3”/><w:LsdException Locked=“false” Priority=“49” Name=“List Table 4 Accent 3”/><w:LsdException Locked=“false” Priority=“50” Name=“List Table 5 Dark Accent 3”/><w:LsdException Locked=“false” Priority=“51” Name=“List Table 6 Colorful Accent 3”/><w:LsdException Locked=“false” Priority=“52” Name=“List Table 7 Colorful Accent 3”/><w:LsdException Locked=“false” Priority=“46” Name=“List Table 1 Light Accent 4”/><w:LsdException Locked=“false” Priority=“47” Name=“List Table 2 Accent 4”/><w:LsdException Locked=“false” Priority=“48” Name=“List Table 3 Accent 4”/><w:LsdException Locked=“false” Priority=“49” Name=“List Table 4 Accent 4”/><w:LsdException Locked=“false” Priority=“50” Name=“List Table 5 Dark Accent 4”/><w:LsdException Locked=“false” Priority=“51” Name=“List Table 6 Colorful Accent 4”/><w:LsdException Locked=“false” Priority=“52” Name=“List Table 7 Colorful Accent 4”/><w:LsdException Locked=“false” Priority=“46” Name=“List Table 1 Light Accent 5”/><w:LsdException Locked=“false” Priority=“47” Name=“List Table 2 Accent 5”/><w:LsdException Locked=“false” Priority=“48” Name=“List Table 3 Accent 5”/><w:LsdException Locked=“false” Priority=“49” Name=“List Table 4 Accent 5”/><w:LsdException Locked=“false” Priority=“50” Name=“List Table 5 Dark Accent 5”/><w:LsdException Locked=“false” Priority=“51” Name=“List Table 6 Colorful Accent 5”/><w:LsdException Locked=“false” Priority=“52” Name=“List Table 7 Colorful Accent 5”/><w:LsdException Locked=“false” Priority=“46” Name=“List Table 1 Light Accent 6”/><w:LsdException Locked=“false” Priority=“47” Name=“List Table 2 Accent 6”/><w:LsdException Locked=“false” Priority=“48” Name=“List Table 3 Accent 6”/><w:LsdException Locked=“false” Priority=“49” Name=“List Table 4 Accent 6”/><w:LsdException Locked=“false” Priority=“50” Name=“List Table 5 Dark Accent 6”/><w:LsdException Locked=“false” Priority=“51” Name=“List Table 6 Colorful Accent 6”/><w:LsdException Locked=“false” Priority=“52” Name=“List Table 7 Colorful Accent 6”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Mention”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Smart Hyperlink”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Hashtag”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Unresolved Mention”/><w:LsdException Locked=“false” SemiHidden=“true” UnhideWhenUsed=“true” Name=“Smart Link”/></w:LatentStyles></xml><![endif]–><style><!– /* Font Definitions */ @font-face
{font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536869121 1107305727 33554432 0 415 0;}
/* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal
{mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial",sans-serif; mso-fareast-font-family:Arial; mso-ansi-language:EN;}
h1
{mso-style-priority:9; mso-style-unhide:no; mso-style-qformat:yes; mso-style-next:Normal; margin-top:20.0pt; margin-right:0cm; margin-bottom:6.0pt; margin-left:0cm; line-height:115%; mso-pagination:widow-orphan lines-together; page-break-after:avoid; mso-outline-level:1; font-size:20.0pt; font-family:"Arial",sans-serif; mso-font-kerning:0pt; mso-ansi-language:EN; font-weight:normal;}
h2
{mso-style-noshow:yes; mso-style-priority:9; mso-style-qformat:yes; mso-style-next:Normal; margin-top:18.0pt; margin-right:0cm; margin-bottom:6.0pt; margin-left:0cm; line-height:115%; mso-pagination:widow-orphan lines-together; page-break-after:avoid; mso-outline-level:2; font-size:16.0pt; font-family:"Arial",sans-serif; mso-ansi-language:EN; font-weight:normal;}
h3
{mso-style-noshow:yes; mso-style-priority:9; mso-style-qformat:yes; mso-style-next:Normal; margin-top:16.0pt; margin-right:0cm; margin-bottom:4.0pt; margin-left:0cm; line-height:115%; mso-pagination:widow-orphan lines-together; page-break-after:avoid; mso-outline-level:3; font-size:14.0pt; font-family:"Arial",sans-serif; color:#434343; mso-ansi-language:EN; font-weight:normal;}
h4
{mso-style-noshow:yes; mso-style-priority:9; mso-style-qformat:yes; mso-style-next:Normal; margin-top:14.0pt; margin-right:0cm; margin-bottom:4.0pt; margin-left:0cm; line-height:115%; mso-pagination:widow-orphan lines-together; page-break-after:avoid; mso-outline-level:4; font-size:12.0pt; font-family:"Arial",sans-serif; color:#666666; mso-ansi-language:EN; font-weight:normal;}
h5
{mso-style-noshow:yes; mso-style-priority:9; mso-style-qformat:yes; mso-style-next:Normal; margin-top:12.0pt; margin-right:0cm; margin-bottom:4.0pt; margin-left:0cm; line-height:115%; mso-pagination:widow-orphan lines-together; page-break-after:avoid; mso-outline-level:5; font-size:11.0pt; font-family:"Arial",sans-serif; color:#666666; mso-ansi-language:EN; font-weight:normal;}
h6
{mso-style-noshow:yes; mso-style-priority:9; mso-style-qformat:yes; mso-style-next:Normal; margin-top:12.0pt; margin-right:0cm; margin-bottom:4.0pt; margin-left:0cm; line-height:115%; mso-pagination:widow-orphan lines-together; page-break-after:avoid; mso-outline-level:6; font-size:11.0pt; font-family:"Arial",sans-serif; color:#666666; mso-ansi-language:EN; font-weight:normal; font-style:italic; mso-bidi-font-style:normal;}
p.MsoTitle, li.MsoTitle, div.MsoTitle
{mso-style-priority:10; mso-style-unhide:no; mso-style-qformat:yes; mso-style-next:Normal; margin-top:0cm; margin-right:0cm; margin-bottom:3.0pt; margin-left:0cm; line-height:115%; mso-pagination:widow-orphan lines-together; page-break-after:avoid; font-size:26.0pt; font-family:"Arial",sans-serif; mso-fareast-font-family:Arial; mso-ansi-language:EN;}
p.MsoSubtitle, li.MsoSubtitle, div.MsoSubtitle
{mso-style-priority:11; mso-style-unhide:no; mso-style-qformat:yes; mso-style-next:Normal; margin-top:0cm; margin-right:0cm; margin-bottom:16.0pt; margin-left:0cm; line-height:115%; mso-pagination:widow-orphan lines-together; page-break-after:avoid; font-size:15.0pt; font-family:"Arial",sans-serif; mso-fareast-font-family:Arial; color:#666666; mso-ansi-language:EN;}
span.SpellE
{mso-style-name:""; mso-spl-e:yes;}
span.GramE
{mso-style-name:""; mso-gram-e:yes;}
.MsoChpDefault
{mso-style-type:export-only; mso-default-props:yes; font-family:"Arial",sans-serif; mso-ascii-font-family:Arial; mso-fareast-font-family:Arial; mso-hansi-font-family:Arial; mso-bidi-font-family:Arial; mso-ansi-language:EN;}
.MsoPapDefault
{mso-style-type:export-only; line-height:115%;}
@page WordSection1
{size:612.0pt 792.0pt; margin:72.0pt 72.0pt 72.0pt 72.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-page-numbers:1; mso-paper-source:0;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */ ol
{margin-bottom:0cm;}
ul
{margin-bottom:0cm;}
–></style><!–[if gte mso 10]><style> table.MsoNormalTable
{mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Arial",sans-serif; mso-ansi-language:EN;}
</style><![endif]–><!–[if gte mso 9]><xml><o:shapedefaults v:ext=“edit” spidmax=“1026”/></xml><![endif]–><!–[if gte mso 9]><xml><o:shapelayout v:ext=“edit”><o:idmap v:ext=“edit” data=“1”/></o:shapelayout></xml><![endif]–></head><body lang=EN-CA style='tab-interval:36.0pt;word-wrap:break-word'>
<p class=MsoNormal><b style='mso-bidi-font-weight:normal'>Introduction: <o:p></o:p>'<p class=MsoNormal style='margin-bottom:12.0pt'> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>Gram-Negative Bacteria:<o:p></o:p>
'<p class=MsoNormal>For
survival, bacteria have a cell envelope surrounding the cytoplasm that gives
the cell its shape, selectively allows the passage of molecules into and out of
the cytoplasm, and protects the cell<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“iIaRvdN8”,“properties”:{“formattedCitation”:“\\super
1\\nosupersub{}”,“plainCitation”:“1”,“noteIndex”:0},“citationItems”:[{“id”:614,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM”],“itemData”:{“id”:614,“type”:“article-journal”,“abstract”:“The
bacteria cell envelope is a complex multilayered structure that serves to
protect these organisms from their unpredictable and often hostile environment.
The cell envelopes of most bacteria fall into one of two major groups.
Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which
itself is surrounded by an outer membrane containing lipopolysaccharide.
Gram-positive bacteria lack an outer membrane but are surrounded by layers of
peptidoglycan many times thicker than is found in the Gram-negatives. Threading
through these layers of peptidoglycan are long anionic polymers, called
teichoic acids. The composition and organization of these envelope layers and
recent insights into the mechanisms of cell envelope assembly are
discussed.”,“container-title”:“Cold Spring Harbor
Perspectives in Biology”,“DOI”:“10.1101/cshperspect.a000414”,“ISSN”:“,
1943-0264”,“issue”:“5”,“journalAbbreviation”:“Cold
Spring Harb Perspect
Biol”,“language”:“en”,“note”:“Company:
Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory
Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring
Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID:
20452953”,“page”:“a000414”,“source”:“cshperspectives.cshlp.org”,“title”:“The
Bacterial Cell Envelope”,“URL”:“http://cshperspectives.cshlp.org/content/2/5/a000414”,“volume”:“2”,“author”:[{“family”:“Silhavy”,“given”:“Thomas
J.”},{“family”:“Kahne”,“given”:“Daniel”},{“family”:“Walker”,“given”:“Suzanne”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",1,5}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>1<!–[if supportFields]><![endif]–> (Silhavy, Kahne,
& Walker, 2010). The bacteria fall into two groups, depending on their cell
envelope: Gram-negative bacteria and Gram-positive bacteria. <i
style='mso-bidi-font-style:normal'>E. coli is an example of a Gram-negative
bacteria</span></span><!–[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“CJIH8jEe”,“properties”:{“formattedCitation”:“\\super
1\\nosupersub{}”,“plainCitation”:“1”,“noteIndex”:0},“citationItems”:[{“id”:614,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM”],“itemData”:{“id”:614,“type”:“article-journal”,“abstract”:“The
bacteria cell envelope is a complex multilayered structure that serves to
protect these organisms from their unpredictable and often hostile environment.
The cell envelopes of most bacteria fall into one of two major groups.
Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which
itself is surrounded by an outer membrane containing lipopolysaccharide.
Gram-positive bacteria lack an outer membrane but are surrounded by layers of
peptidoglycan many times thicker than is found in the Gram-negatives. Threading
through these layers of peptidoglycan are long anionic polymers, called
teichoic acids. The composition and organization of these envelope layers and
recent insights into the mechanisms of cell envelope assembly are
discussed.”,“container-title”:“Cold Spring Harbor
Perspectives in
Biology”,“DOI”:“10.1101/cshperspect.a000414”,“ISSN”:“,
1943-0264”,“issue”:“5”,“journalAbbreviation”:“Cold
Spring Harb Perspect
Biol”,“language”:“en”,“note”:“Company:
Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory
Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring
Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID:
20452953”,“page”:“a000414”,“source”:“cshperspectives.cshlp.org”,“title”:“The
Bacterial Cell
Envelope”,“URL”:“http://cshperspectives.cshlp.org/content/2/5/a000414”,“volume”:“2”,“author”:[{“family”:“Silhavy”,“given”:“Thomas
J.”},{“family”:“Kahne”,“given”:“Daniel”},{“family”:“Walker”,“given”:“Suzanne”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",1,5}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>1<!–[if supportFields]><![endif]–>
(Silhavy, Kahne, &
Walker, 2010).<o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><i style='mso-bidi-font-style:normal'>E.
coli
’s cell envelope, shown in figure X,
consists of an inner membrane (IM), a peptidoglycan cell wall, and an outer
membrane (OM) which is unique to Gram-negative bacteria<!–[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“k70Th6wE”,“properties”:{“formattedCitation”:“\\super
1\\nosupersub{}”,“plainCitation”:“1”,“noteIndex”:0},“citationItems”:[{“id”:614,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM”],“itemData”:{“id”:614,“type”:“article-journal”,“abstract”:“The
bacteria cell envelope is a complex multilayered structure that serves to
protect these organisms from their unpredictable and often hostile environment.
The cell envelopes of most bacteria fall into one of two major groups.
Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which
itself is surrounded by an outer membrane containing lipopolysaccharide.
Gram-positive bacteria lack an outer membrane but are surrounded by layers of
peptidoglycan many times thicker than is found in the Gram-negatives. Threading
through these layers of peptidoglycan are long anionic polymers, called
teichoic acids. The composition and organization of these envelope layers and
recent insights into the mechanisms of cell envelope assembly are
discussed.”,“container-title”:“Cold Spring Harbor
Perspectives in
Biology”,“DOI”:“10.1101/cshperspect.a000414”,“ISSN”:“,
1943-0264”,“issue”:“5”,“journalAbbreviation”:“Cold
Spring Harb Perspect
Biol”,“language”:“en”,“note”:“Company:
Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory
Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring
Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID:
20452953”,“page”:“a000414”,“source”:“cshperspectives.cshlp.org”,“title”:“The
Bacterial Cell
Envelope”,“URL”:“http://cshperspectives.cshlp.org/content/2/5/a000414”,“volume”:“2”,“author”:[{“family”:“Silhavy”,“given”:“Thomas
J.”},{“family”:“Kahne”,“given”:“Daniel”},{“family”:“Walker”,“given”:“Suzanne”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",1,5}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>1<!–[if supportFields]><![endif]–>
(Silhavy, Kahne, &
Walker, 2010). The IM is a phospholipid (PL) bilayer<!–[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“B661XGj7”,“properties”:{“formattedCitation”:“\\super
2\\nosupersub{}”,“plainCitation”:“2”,“noteIndex”:0},“citationItems”:[{“id”:617,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M”],“itemData”:{“id”:617,“type”:“article-journal”,“abstract”:“PbgA
proteins controls lipopolysaccharide synthesis in Escherichia
coli.”,“container-title”:“Nature”,“DOI”:“10.1038/d41586-020-02256-x”,“issue”:“7821”,“language”:“en”,“license”:“2021
Nature”,“note”:“Bandiera_abtest: a\nCg_type: News And
Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term:
Structural biology,
Microbiology”,“page”:“348-349”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of a lipopolysaccharide regulator reveals a road to new
antibiotics”,“URL”:“http://www.nature.com/articles/d41586-020-02256-x”,“volume”:“584”,“author”:[{“family”:“Bishop”,“given”:“Russell
E.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>2<!–[if supportFields]><![endif]–>
(Bishop, 2020). Proteins responsible for energy production, lipid biosynthesis,
protein secretion, and transport are located in the IM due to a lack of
intracellular organelles<!–[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“mcVZ8LiH”,“properties”:{“formattedCitation”:“\\super
1,2\\nosupersub{}”,“plainCitation”:“1,2”,“noteIndex”:0},“citationItems”:[{“id”:614,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM”],“itemData”:{“id”:614,“type”:“article-journal”,“abstract”:“The
bacteria cell envelope is a complex multilayered structure that serves to protect
these organisms from their unpredictable and often hostile environment. The
cell envelopes of most bacteria fall into one of two major groups.
Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which
itself is surrounded by an outer membrane containing lipopolysaccharide.
Gram-positive bacteria lack an outer membrane but are surrounded by layers of
peptidoglycan many times thicker than is found in the Gram-negatives. Threading
through these layers of peptidoglycan are long anionic polymers, called
teichoic acids. The composition and organization of these envelope layers and
recent insights into the mechanisms of cell envelope assembly are
discussed.”,“container-title”:“Cold Spring Harbor
Perspectives in Biology”,“DOI”:“10.1101/cshperspect.a000414”,“ISSN”:“,
1943-0264”,“issue”:“5”,“journalAbbreviation”:“Cold
Spring Harb Perspect
Biol”,“language”:“en”,“note”:“Company:
Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory
Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring
Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID:
20452953”,“page”:“a000414”,“source”:“cshperspectives.cshlp.org”,“title”:“The
Bacterial Cell
Envelope”,“URL”:“http://cshperspectives.cshlp.org/content/2/5/a000414”,“volume”:“2”,“author”:[{“family”:“Silhavy”,“given”:“Thomas
J.”},{“family”:“Kahne”,“given”:“Daniel”},{“family”:“Walker”,“given”:“Suzanne”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",1,5}}},{“id”:617,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M”],“itemData”:{“id”:617,“type”:“article-journal”,“abstract”:“PbgA
proteins controls lipopolysaccharide synthesis in Escherichia
coli.”,“container-title”:“Nature”,“DOI”:“10.1038/d41586-020-02256-x”,“issue”:“7821”,“language”:“en”,“license”:“2021
Nature”,“note”:“Bandiera_abtest: a\nCg_type: News And
Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term:
Structural biology, Microbiology”,“page”:“348-349”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of a lipopolysaccharide regulator reveals a road to new
antibiotics”,“URL”:“http://www.nature.com/articles/d41586-020-02256-x”,“volume”:“584”,“author”:[{“family”:“Bishop”,“given”:“Russell
E.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>1,2<!–[if supportFields]><![endif]–>
(Bishop, 2020; Silhavy, Kahne,
& Walker, 2010). The peptidoglycan cell wall, found in the periplasmic
space between the IM and OM, is made up of repeating units of the disaccharide
N-acetyl glucosamine-N-acetyl muramic acid (NAG-NAM), cross-linked by
pentapeptide side chains<!–[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“jhF990s7”,“properties”:{“formattedCitation”:“\\super
1,3\\nosupersub{}”,“plainCitation”:“1,3”,“noteIndex”:0},“citationItems”:[{“id”:614,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM”],“itemData”:{“id”:614,“type”:“article-journal”,“abstract”:“The
bacteria cell envelope is a complex multilayered structure that serves to
protect these organisms from their unpredictable and often hostile environment.
The cell envelopes of most bacteria fall into one of two major groups.
Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which
itself is surrounded by an outer membrane containing lipopolysaccharide.
Gram-positive bacteria lack an outer membrane but are surrounded by layers of
peptidoglycan many times thicker than is found in the Gram-negatives. Threading
through these layers of peptidoglycan are long anionic polymers, called
teichoic acids. The composition and organization of these envelope layers and
recent insights into the mechanisms of cell envelope assembly are
discussed.”,“container-title”:“Cold Spring Harbor
Perspectives in
Biology”,“DOI”:“10.1101/cshperspect.a000414”,“ISSN”:“,
1943-0264”,“issue”:“5”,“journalAbbreviation”:“Cold
Spring Harb Perspect
Biol”,“language”:“en”,“note”:“Company:
Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory
Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring
Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID:
20452953”,“page”:“a000414”,“source”:“cshperspectives.cshlp.org”,“title”:“The
Bacterial Cell
Envelope”,“URL”:“http://cshperspectives.cshlp.org/content/2/5/a000414”,“volume”:“2”,“author”:[{“family”:“Silhavy”,“given”:“Thomas
J.”},{“family”:“Kahne”,“given”:“Daniel”},{“family”:“Walker”,“given”:“Suzanne”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",1,5}}},{“id”:619,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/HWCQ9FUI”],“itemData”:{“id”:619,“type”:“article-journal”,“abstract”:“Gram-negative
bacteria are surrounded by a complex cell envelope that includes two membranes.
The outer membrane prevents many drugs from entering these cells and is thus a
major determinant of their intrinsic antibiotic resistance. This barrier
function is imparted by the asymmetric architecture of the membrane with
lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner
leaflet. The LPS and phospholipid synthesis pathways share an intermediate.
Proper membrane biogenesis therefore requires that the flux through each
pathway be balanced. In Escherichia coli, a major control point in establishing
this balance is the committed step of LPS synthesis mediated by LpxC. Levels of
this enzyme are controlled through its degradation by the inner membrane
protease FtsH and its presumed adapter protein LapB (YciM). How turnover of
LpxC is controlled has remained unclear for many years. Here, we demonstrate
that the essential protein of unknown function YejM (PbgA) participates in this
regulatory pathway. Suppressors of YejM essentiality were identified in lpxC
and lapB, and LpxC overproduction was shown to be sufficient to allow survival
of ΔyejM mutants. Furthermore, the stability of LpxC was shown to be
reduced in cells lacking YejM, and genetic and physical interactions between
LapB and YejM were detected. Taken together, our results are consistent with a
model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate
LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane
is a major determinant of the intrinsic antibiotic resistance of Gram-negative
bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid, and
the synthesis of these lipid species must be balanced for the membrane to
maintain its barrier function in blocking drug entry. In this study, we
identified an essential protein of unknown function as a key new factor in
modulating LPS synthesis in the model bacterium Escherichia coli. Our results
provide novel insight into how this organism and most likely other
Gram-negative bacteria maintain membrane homeostasis and their intrinsic
resistance to
antibiotics.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.00939-20”,“issue”:“3”,“note”:“publisher:
American Society for Microbiology”,“page”:“e00939-20”,“source”:“journals.asm.org
(Atypon)”,“title”:“An Essential Membrane Protein Modulates
the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia
coli”,“URL”:“https://journals.asm.org/doi/10.1128/mBio.00939-20”,“volume”:“11”,“author”:[{“family”:“Fivenson”,“given”:“Elayne
M.”},{“family”:“Bernhardt”,“given”:“Thomas
G.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",5,19}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>1,3<!–[if supportFields]><![endif]–> (Fivenson,
& Bernhardt, 2020; Silhavy, Kahne,
& Walker, 2010). This rigid cell wall is responsible for the maintenance of
<i style='mso-bidi-font-style:normal'>E. coli’s characteristic rod shape</span><!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“QysnGSot”,“properties”:{“formattedCitation”:“\\super
1\\nosupersub{}”,“plainCitation”:“1”,“noteIndex”:0},“citationItems”:[{“id”:614,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM”],“itemData”:{“id”:614,“type”:“article-journal”,“abstract”:“The
bacteria cell envelope is a complex multilayered structure that serves to
protect these organisms from their unpredictable and often hostile environment.
The cell envelopes of most bacteria fall into one of two major groups.
Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which
itself is surrounded by an outer membrane containing lipopolysaccharide.
Gram-positive bacteria lack an outer membrane but are surrounded by layers of
peptidoglycan many times thicker than is found in the Gram-negatives. Threading
through these layers of peptidoglycan are long anionic polymers, called
teichoic acids. The composition and organization of these envelope layers and
recent insights into the mechanisms of cell envelope assembly are
discussed.”,“container-title”:“Cold Spring Harbor
Perspectives in
Biology”,“DOI”:“10.1101/cshperspect.a000414”,“ISSN”:“,
1943-0264”,“issue”:“5”,“journalAbbreviation”:“Cold
Spring Harb Perspect
Biol”,“language”:“en”,“note”:“Company:
Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory
Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring
Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID:
20452953”,“page”:“a000414”,“source”:“cshperspectives.cshlp.org”,“title”:“The
Bacterial Cell
Envelope”,“URL”:“http://cshperspectives.cshlp.org/content/2/5/a000414”,“volume”:“2”,“author”:[{“family”:“Silhavy”,“given”:“Thomas
J.”},{“family”:“Kahne”,“given”:“Daniel”},{“family”:“Walker”,“given”:“Suzanne”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",1,5}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>1<!–[if supportFields]><![endif]–> (Silhavy,
Kahne, & Walker, 2010). The peptidoglycan layer
is connected to the OM through a lipoprotein, murein/Braun’s lipoprotein (Lpp)<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“ExJWWN7s”,“properties”:{“formattedCitation”:“\\super
1\\nosupersub{}”,“plainCitation”:“1”,“noteIndex”:0},“citationItems”:[{“id”:614,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM”],“itemData”:{“id”:614,“type”:“article-journal”,“abstract”:“The
bacteria cell envelope is a complex multilayered structure that serves to
protect these organisms from their unpredictable and often hostile environment.
The cell envelopes of most bacteria fall into one of two major groups.
Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which
itself is surrounded by an outer membrane containing lipopolysaccharide.
Gram-positive bacteria lack an outer membrane but are surrounded by layers of
peptidoglycan many times thicker than is found in the Gram-negatives. Threading
through these layers of peptidoglycan are long anionic polymers, called
teichoic acids. The composition and organization of these envelope layers and
recent insights into the mechanisms of cell envelope assembly are
discussed.”,“container-title”:“Cold Spring Harbor
Perspectives in
Biology”,“DOI”:“10.1101/cshperspect.a000414”,“ISSN”:“,
1943-0264”,“issue”:“5”,“journalAbbreviation”:“Cold
Spring Harb Perspect
Biol”,“language”:“en”,“note”:“Company:
Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory
Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring
Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID:
20452953”,“page”:“a000414”,“source”:“cshperspectives.cshlp.org”,“title”:“The
Bacterial Cell
Envelope”,“URL”:“http://cshperspectives.cshlp.org/content/2/5/a000414”,“volume”:“2”,“author”:[{“family”:“Silhavy”,“given”:“Thomas
J.”},{“family”:“Kahne”,“given”:“Daniel”},{“family”:“Walker”,“given”:“Suzanne”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",1,5}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>1<!–[if supportFields]><![endif]–> (Silhavy,
Kahne, & Walker, 2010). The OM is an asymmetric
lipid bilayer that is essential for <i style='mso-bidi-font-style:normal'>E.coli
’s
survival because it acts as the first line of defence
against external threats</span><!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“G4EUP7vu”,“properties”:{“formattedCitation”:“\\super
1,2\\nosupersub{}”,“plainCitation”:“1,2”,“noteIndex”:0},“citationItems”:[{“id”:614,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM”],“itemData”:{“id”:614,“type”:“article-journal”,“abstract”:“The
bacteria cell envelope is a complex multilayered structure that serves to
protect these organisms from their unpredictable and often hostile environment.
The cell envelopes of most bacteria fall into one of two major groups.
Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which
itself is surrounded by an outer membrane containing lipopolysaccharide.
Gram-positive bacteria lack an outer membrane but are surrounded by layers of
peptidoglycan many times thicker than is found in the Gram-negatives. Threading
through these layers of peptidoglycan are long anionic polymers, called
teichoic acids. The composition and organization of these envelope layers and
recent insights into the mechanisms of cell envelope assembly are
discussed.”,“container-title”:“Cold Spring Harbor
Perspectives in
Biology”,“DOI”:“10.1101/cshperspect.a000414”,“ISSN”:“,
1943-0264”,“issue”:“5”,“journalAbbreviation”:“Cold
Spring Harb Perspect
Biol”,“language”:“en”,“note”:“Company:
Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory
Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring
Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID:
20452953”,“page”:“a000414”,“source”:“cshperspectives.cshlp.org”,“title”:“The
Bacterial Cell
Envelope”,“URL”:“http://cshperspectives.cshlp.org/content/2/5/a000414”,“volume”:“2”,“author”:[{“family”:“Silhavy”,“given”:“Thomas
J.”},{“family”:“Kahne”,“given”:“Daniel”},{“family”:“Walker”,“given”:“Suzanne”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",1,5}}},{“id”:617,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M”],“itemData”:{“id”:617,“type”:“article-journal”,“abstract”:“PbgA
proteins controls lipopolysaccharide synthesis in Escherichia
coli.”,“container-title”:“Nature”,“DOI”:“10.1038/d41586-020-02256-x”,“issue”:“7821”,“language”:“en”,“license”:“2021
Nature”,“note”:“Bandiera_abtest: a\nCg_type: News And
Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term:
Structural biology,
Microbiology”,“page”:“348-349”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of a lipopolysaccharide regulator reveals a road to new
antibiotics”,“URL”:“http://www.nature.com/articles/d41586-020-02256-x”,“volume”:“584”,“author”:[{“family”:“Bishop”,“given”:“Russell
E.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>1,2<!–[if supportFields]><![endif]–> (Bishop, 2020; Silhavy,
Kahne, & Walker, 2010). It prevents the entry or
exit of large, hydrophobic molecules and works together with the peptidoglycan
cell wall to provide mechanical strength to the bacterial cell, protecting it
from osmotic lysis<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION
{“citationID”:“Pm7E79sY”,“properties”:{“formattedCitation”:“\\super
4\\nosupersub{}”,“plainCitation”:“4”,“noteIndex”:0},“citationItems”:[{“id”:621,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/D7M3VN8M”],“itemData”:{“id”:621,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
(LPS) is an essential glycolipid present in the outer membrane (OM) of many
Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell
viability; too little LPS weakens the OM, while too much LPS is lethal. In
Escherichia coli, this balance is maintained by the YciM/FtsH protease complex,
which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here,
we provide evidence that activity of the YciM/FtsH protease complex is
inhibited by the essential protein YejM. Using strains in which LpxC activity
is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM
acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies
have shown that this toxicity can be suppressed by deleting lpp, which codes
for a highly abundant OM lipoprotein. It was assumed that deletion of lpp
restores lipid balance by increasing the number of acyl chains available for
glycerophospholipid biosynthesis. We show that this is not the case. Rather,
our data suggest that preventing attachment of lpp to the peptidoglycan
sacculus allows excess LPS to be shed in vesicles. We propose that this loss of
OM material allows continued transport of LPS to the OM, thus preventing lethal
accumulation of LPS within the inner membrane. Overall, our data justify the
commitment of three essential inner membrane proteins to avoid toxic over- or
underproduction of LPS.\nIMPORTANCE Gram-negative bacteria are encapsulated by
an outer membrane (OM) that is impermeable to large and hydrophobic molecules.
As such, these bacteria are intrinsically resistant to several clinically
relevant antibiotics. To better understand how the OM is established or
maintained, we sought to clarify the function of the essential protein YejM in
Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH
protease complex, which regulates synthesis of the essential OM glycolipid
lipopolysaccharide (LPS). Our data suggest that disrupting proper communication
between LPS synthesis and transport to the OM leads to accumulation of LPS
within the inner membrane (IM). The lethality associated with this event can be
suppressed by increasing OM vesiculation. Our research has identified a
completely novel signaling pathway that we propose coordinates LPS synthesis
and
transport.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.00598-20”,“issue”:“2”,“note”:“publisher:
American Society for Microbiology”,“page”:“e00598-20”,“source”:“journals.asm.org
(Atypon)”,“title”:“YejM Modulates Activity of the YciM/FtsH
Protease Complex To Prevent Lethal Accumulation of
Lipopolysaccharide”,“URL”:“https://journals.asm.org/doi/10.1128/mBio.00598-20”,“volume”:“11”,“author”:[{“family”:“Guest”,“given”:“Randi
L.”},{“family”:“Samé
Guerra”,“given”:“Daniel”},{“family”:“Wissler”,“given”:“Maria”},{“family”:“Grimm”,“given”:“Jacqueline”},{“family”:“Silhavy”,“given”:“Thomas
J.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",4,14}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>4<!–[if supportFields]><![endif]–> (Guest et al., 2020). The OM is
made of PLs in the inner leaflet and lipopolysaccharide (LPS) glycolipid
molecules in the outer leaflet<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“jGfiKmxu”,“properties”:{“formattedCitation”:“\\super
5\\nosupersub{}”,“plainCitation”:“5”,“noteIndex”:0},“citationItems”:[{“id”:623,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/HUNH4ZWD”],“itemData”:{“id”:623,“type”:“article-journal”,“abstract”:“The
cell envelope is the first line of defense between a bacterium and the
world-at-large. Often, the initial steps that determine the outcome of chemical
warfare, bacteriophage infections, and battles with other bacteria or the
immune system greatly depend on the structure and composition of the bacterial
cell surface. One of the most studied bacterial surface molecules is the
glycolipid known as lipopolysaccharide (LPS), which is produced by most
Gram-negative bacteria. Much of the initial attention LPS received in the early
1900s was owed to its ability to stimulate the immune system, for which the
glycolipid was commonly known as endotoxin. It was later discovered that LPS
also creates a permeability barrier at the cell surface and is a main
contributor to the innate resistance that Gram-negative bacteria display
against many antimicrobials. Not surprisingly, these important properties of
LPS have driven a vast and still prolific body of literature for more than a
hundred years. LPS research has also led to pioneering studies in bacterial envelope
biogenesis and physiology, mostly using Escherichia coli and Salmonella as
model systems. In this review, we will focus on the fundamental knowledge we
have gained from studies of the complex structure of the LPS molecule and the
biochemical pathways for its synthesis, as well as the transport of LPS across
the bacterial envelope and its assembly at the cell
surface.”,“container-title”:“EcoSal
Plus”,“DOI”:“10.1128/ecosalplus.ESP-0001-2018”,“issue”:“1”,“note”:“publisher:
American Society for Microbiology”,“source”:“journals.asm.org
(Atypon)”,“title”:“Function and Biogenesis of
Lipopolysaccharides”,“URL”:“https://journals.asm.org/doi/10.1128/ecosalplus.ESP-0001-2018”,“volume”:“8”,“author”:[{“family”:“Bertani”,“given”:“Blake”},{“family”:“Ruiz”,“given”:“Natividad”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2018",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>5<!–[if supportFields]><![endif]–> (Bertani & Ruiz, 2018). The OM
also consists of OM proteins
(Omps), exopolysaccharides (EPS), flagella and type I
fimbria<!–[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“cseFSYyV”,“properties”:{“formattedCitation”:“\\super
6\\nosupersub{}”,“plainCitation”:“6”,“noteIndex”:0},“citationItems”:[{“id”:625,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/5RDB5DKM”],“itemData”:{“id”:625,“type”:“article-journal”,“abstract”:“Escherichia
coli is generally used as model bacteria to define microbial cell factories for
many products and to investigate regulation mechanisms. E. coli exhibits
phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae
on the outer membrane which is a self-protective barrier and closely related to
cellular morphology, growth, phenotypes and stress adaptation. However, these
outer membrane associated molecules could also lead to potential contamination
and insecurity for fermentation products and consume lots of nutrients and
energy sources. Therefore, understanding critical insights of these membrane
associated molecules is necessary for building better microbial producers. Here
the biosynthesis, function, influences, and current membrane engineering
applications of these outer membrane associated molecules were reviewed from
the perspective of synthetic biology, and the potential and effective
engineering strategies on the outer membrane to improve fermentation features
for microbial cell factories were
suggested.”,“container-title”:“Microbial Cell
Factories”,“DOI”:“10.1186/s12934-021-01565-8”,“ISSN”:“1475-2859”,“issue”:“1”,“journalAbbreviation”:“Microbial
Cell Factories”,“page”:“73”,“source”:“BioMed
Central”,“title”:“Insights into the structure of
Escherichia coli outer membrane as the target for engineering microbial cell
factories”,“URL”:“https://doi.org/10.1186/s12934-021-01565-8”,“volume”:“20”,“author”:[{“family”:“Wang”,“given”:“Jianli”},{“family”:“Ma”,“given”:“Wenjian”},{“family”:“Wang”,“given”:“Xiaoyuan”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2021",3,20}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>6<!–[if supportFields]><![endif]–>
(Wang, Ma, & Wang, 2021). EPS, flagella, and fimbria are nonessential
structures; therefore, they are not present in all <i style='mso-bidi-font-style:
normal'>E. coli
strains</span><!–[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“NU8TNhlB”,“properties”:{“formattedCitation”:“\\super
6\\nosupersub{}”,“plainCitation”:“6”,“noteIndex”:0},“citationItems”:[{“id”:625,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/5RDB5DKM”],“itemData”:{“id”:625,“type”:“article-journal”,“abstract”:“Escherichia
coli is generally used as model bacteria to define microbial cell factories for
many products and to investigate regulation mechanisms. E. coli exhibits
phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae
on the outer membrane which is a self-protective barrier and closely related to
cellular morphology, growth, phenotypes and stress adaptation. However, these
outer membrane associated molecules could also lead to potential contamination
and insecurity for fermentation products and consume lots of nutrients and
energy sources. Therefore, understanding critical insights of these membrane
associated molecules is necessary for building better microbial producers. Here
the biosynthesis, function, influences, and current membrane engineering
applications of these outer membrane associated molecules were reviewed from
the perspective of synthetic biology, and the potential and effective
engineering strategies on the outer membrane to improve fermentation features
for microbial cell factories were
suggested.”,“container-title”:“Microbial Cell
Factories”,“DOI”:“10.1186/s12934-021-01565-8”,“ISSN”:“1475-2859”,“issue”:“1”,“journalAbbreviation”:“Microbial
Cell
Factories”,“page”:“73”,“source”:“BioMed
Central”,“title”:“Insights into the structure of
Escherichia coli outer membrane as the target for engineering microbial cell
factories”,“URL”:“https://doi.org/10.1186/s12934-021-01565-8”,“volume”:“20”,“author”:[{“family”:“Wang”,“given”:“Jianli”},{“family”:“Ma”,“given”:“Wenjian”},{“family”:“Wang”,“given”:“Xiaoyuan”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2021",3,20}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>6<!–[if supportFields]><![endif]–>
(Wang, Ma, & Wang, 2021). There are three important Omps:
OmpC, OmpF, and OmpA<!–[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“6h9AoQlU”,“properties”:{“formattedCitation”:“\\super
6\\nosupersub{}”,“plainCitation”:“6”,“noteIndex”:0},“citationItems”:[{“id”:625,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/5RDB5DKM”],“itemData”:{“id”:625,“type”:“article-journal”,“abstract”:“Escherichia
coli is generally used as model bacteria to define microbial cell factories for
many products and to investigate regulation mechanisms. E. coli exhibits
phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae
on the outer membrane which is a self-protective barrier and closely related to
cellular morphology, growth, phenotypes and stress adaptation. However, these
outer membrane associated molecules could also lead to potential contamination
and insecurity for fermentation products and consume lots of nutrients and
energy sources. Therefore, understanding critical insights of these membrane
associated molecules is necessary for building better microbial producers. Here
the biosynthesis, function, influences, and current membrane engineering
applications of these outer membrane associated molecules were reviewed from
the perspective of synthetic biology, and the potential and effective
engineering strategies on the outer membrane to improve fermentation features
for microbial cell factories were
suggested.”,“container-title”:“Microbial Cell
Factories”,“DOI”:“10.1186/s12934-021-01565-8”,“ISSN”:“1475-2859”,“issue”:“1”,“journalAbbreviation”:“Microbial
Cell
Factories”,“page”:“73”,“source”:“BioMed
Central”,“title”:“Insights into the structure of
Escherichia coli outer membrane as the target for engineering microbial cell
factories”,“URL”:“https://doi.org/10.1186/s12934-021-01565-8”,“volume”:“20”,“author”:[{“family”:“Wang”,“given”:“Jianli”},{“family”:“Ma”,“given”:“Wenjian”},{“family”:“Wang”,“given”:“Xiaoyuan”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2021",3,20}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>6<!–[if supportFields]><![endif]–>
(Wang, Ma, & Wang, 2021). OmpC and OmpF regulate the entry of small molecule solutes into the
cytoplasm while OmpA maintains <i style='mso-bidi-font-style:
normal'>E. coli
’s cell surface integrity</span><!–[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“84c6pWvo”,“properties”:{“formattedCitation”:“\\super
6\\nosupersub{}”,“plainCitation”:“6”,“noteIndex”:0},“citationItems”:[{“id”:625,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/5RDB5DKM”],“itemData”:{“id”:625,“type”:“article-journal”,“abstract”:“Escherichia
coli is generally used as model bacteria to define microbial cell factories for
many products and to investigate regulation mechanisms. E. coli exhibits
phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae
on the outer membrane which is a self-protective barrier and closely related to
cellular morphology, growth, phenotypes and stress adaptation. However, these
outer membrane associated molecules could also lead to potential contamination
and insecurity for fermentation products and consume lots of nutrients and
energy sources. Therefore, understanding critical insights of these membrane
associated molecules is necessary for building better microbial producers. Here
the biosynthesis, function, influences, and current membrane engineering
applications of these outer membrane associated molecules were reviewed from
the perspective of synthetic biology, and the potential and effective
engineering strategies on the outer membrane to improve fermentation features
for microbial cell factories were suggested.”,“container-title”:“Microbial
Cell
Factories”,“DOI”:“10.1186/s12934-021-01565-8”,“ISSN”:“1475-2859”,“issue”:“1”,“journalAbbreviation”:“Microbial
Cell Factories”,“page”:“73”,“source”:“BioMed
Central”,“title”:“Insights into the structure of
Escherichia coli outer membrane as the target for engineering microbial cell
factories”,“URL”:“https://doi.org/10.1186/s12934-021-01565-8”,“volume”:“20”,“author”:[{“family”:“Wang”,“given”:“Jianli”},{“family”:“Ma”,“given”:“Wenjian”},{“family”:“Wang”,“given”:“Xiaoyuan”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2021",3,20}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>6<!–[if supportFields]><![endif]–>
(Wang, Ma, & Wang, 2021). <o:p></o:p><p class=MsoNormal><!–[if gte vml 1]><v:shapetype id=“_x0000_t75” coordsize=“21600,21600”
o:spt=“75” o:preferrelative=“t” path=“m@4@5l@4@11@9@11@9@5xe” filled=“f”
stroked=“f”><v:stroke joinstyle=“miter”/><v:formulas><v:f eqn=“if lineDrawn pixelLineWidth 0”/><v:f eqn=“sum @0 1 0”/><v:f eqn=“sum 0 0 @1”/><v:f eqn=“prod @2 1 2”/><v:f eqn=“prod @3 21600 pixelWidth”/><v:f eqn=“prod @3 21600 pixelHeight”/><v:f eqn=“sum @0 0 1”/><v:f eqn=“prod @6 1 2”/><v:f eqn=“prod @7 21600 pixelWidth”/><v:f eqn=“sum @8 21600 0”/><v:f eqn=“prod @7 21600 pixelHeight”/><v:f eqn=“sum @10 21600 0”/></v:formulas><v:path o:extrusionok=“f” gradientshapeok=“t” o:connecttype=“rect”/><o:lock v:ext=“edit” aspectratio=“t”/></v:shapetype><v:shape id=“image5.png” o:spid=“_x0000_i1034” type=“#_x0000_t75”
style='width:4in;height:166.5pt;visibility:visible;mso-wrap-style:square'><v:imagedata src=“Wiki%20Draft%20(1)_files/image001.png” o:title=“”/></v:shape><![endif]–><![if !vml]><img width=384 height=222
src=“Wiki%20Draft%20(1)_files/image002.gif” v:shapes=“image5.png”><![endif]><o:p></o:p><p class=MsoNormal>Figure X: The cell envelope of E. coli.
The cell envelope is made of the inner membrane, peptidoglycan cell wall, and
outer membrane. The inner membrane consists of a phospholipid (PL) bilayer. The
peptidoglycan cell wall can be found in the periplasmic space between the IM
and OM. It is made up of the NAG-NAM
disaccharide, cross-linked by pentapeptide side chains. The peptidoglycan cell
wall is connected to the OM via murein or Braun’s lipoprotein, Lpp (coloured dark blue). The OM
consists of PLs in its inner leaflet, LPS molecules in its outer leaflet, and
outer membrane proteins, Omps (coloured
green). The outer membrane may also contain non essential structures such as exopolysaccharides
(EPS), flagella and type I fimbria.<o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>LPS
Structure<o:p></o:p>
'<p class=MsoNormal><a
href=“https://www.ocl-journal.org/articles/ocl/full_html/2020/01/ocl200025s/ocl200025s.html”>https://www.ocl-journal.org/articles/ocl/full_html/2020/01/ocl200025s/ocl200025s.html</a><u><o:p></o:p></u><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm'>LPS are glycolipids comprised of three
primary regions. The first is the lipid A region, which is typically made up of
a bis-phosphorylated glucosamine disaccharide that carries fatty acids in ester
and amide linkages. This region is connected to the second core oligosaccharide
region via 2-keto-3 deoxy-octulosonic acid (Kdo). The third region is the O-chain, consisting of
repeating oligosaccharide units and differs from one bacterium to another.<o:p></o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm'>LPS Function<o:p></o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm;text-indent:36.0pt'>LPS provides a
permeability barrier that prevents the entry of harmful molecules. High density
of saturated fatty acids cause broadly and strong
interaction with the acyl chain, and it synthesizes a low fluidity of the
membrane bilayer. In addition, divalent cations between LPS molecules stabilize
the high negativity of the membrane, which is caused by the presence of the
phosphate group. Polyionic interaction within the
outer membrane promotes LPS packing, and constructs LPS as a permeability
barrier.<o:p></o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm;text-indent:36.0pt'>LPS also contributes to
impacting the virulence of the bacteria cell. LPS is more stable by comparing with bacterial exotoxins,
and is the primary<o:p></o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm;text-indent:36.0pt'><a
href=“https://www.ncbi.nlm.nih.gov/books/NBK554414/#:~:text=The%20primary%20function%20of%20LPS,inhabitation%20in%20the%20gastrointestinal%20tract”>https://www.ncbi.nlm.nih.gov/books/NBK554414/#:~:text=The%20primary%20function%20of%20LPS,inhabitation%20in%20the%20gastrointestinal%20tract</a>.
<!–[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“zc9EP2pc”,“properties”:{“formattedCitation”:“\\super
7\\nosupersub{}”,“plainCitation”:“7”,“noteIndex”:0},“citationItems”:[{“id”:646,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/T75BDR5A”],“itemData”:{“id”:646,“type”:“chapter”,“abstract”:“Lipopolysaccharides
(LPS) are important outer membrane components of gram-negative bacteria. They
are large amphipathic glycoconjugates that typically consist of a lipid domain
(hydrophobic) attached to a core oligosaccharide and a distal polysaccharide.
These molecules are also known as lipogylcans due to the presence of lipid and
sugar molecules. The lipopolysaccharides are composed of: 1. Lipid A:
the hydrophobic domain, which is an endotoxin and the main virulence factor. 2.
O-antigen, the repeating hydrophilic distal oligosaccharide. 3. The hydrophilic
core polysaccharide. The lipid A component varies from one organism to another
and is essential in imparting specific pathogenic attributes to the
bacteria. Inherent to gram-negative bacteria, LPS provides integrity to
the bacterial cell and a mechanism of interaction of the bacteria to other
surfaces. Most bacterial LPS molecules are thermostable and generate a
robust pro-inflammatory stimulus for the immune system in mammals. Since different
types of LPS are present in different genera of gram-negative bacteria, LPS is
used for serotyping gram-negative bacteria. More specifically, the
O-antigen imparts serological distinction to the bacterial species. Also, the
size and composition of LPS are highly dynamic among bacterial species. Due to
its unique properties, LPS has gained considerable research focus to understand
its complex structure, biogenesis, transport, and assembly. Besides, LPS is
also a recognized biomarker due to its central role in host-pathogen
interaction that facilitates the infection
process.”,“call-number”:“NBK554414”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island (FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID: 32119301”,“publisher”:“StatPearls
Publishing”,“publisher-place”:“Treasure Island
(FL)”,“source”:“PubMed”,“title”:“Biochemistry,
Lipopolysaccharide”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK554414/”,“author”:[{“family”:“Farhana”,“given”:“Aisha”},{“family”:“Khan”,“given”:“Yusuf
S.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>7<!–[if supportFields]><![endif]–>
(Farhana)<o:p></o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm;text-indent:36.0pt'><a
href=“https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091223/”>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091223/</a><u></u><!–[if supportFields]><u> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“NPayMhvD”,“properties”:{“formattedCitation”:“\\super
5\\nosupersub{}”,“plainCitation”:“5”,“noteIndex”:0},“citationItems”:[{“id”:623,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/HUNH4ZWD”],“itemData”:{“id”:623,“type”:“article-journal”,“abstract”:“The
cell envelope is the first line of defense between a bacterium and the
world-at-large. Often, the initial steps that determine the outcome of chemical
warfare, bacteriophage infections, and battles with other bacteria or the
immune system greatly depend on the structure and composition of the bacterial
cell surface. One of the most studied bacterial surface molecules is the glycolipid
known as lipopolysaccharide (LPS), which is produced by most Gram-negative
bacteria. Much of the initial attention LPS received in the early 1900s was
owed to its ability to stimulate the immune system, for which the glycolipid
was commonly known as endotoxin. It was later discovered that LPS also creates
a permeability barrier at the cell surface and is a main contributor to the
innate resistance that Gram-negative bacteria display against many
antimicrobials. Not surprisingly, these important properties of LPS have driven
a vast and still prolific body of literature for more than a hundred years. LPS
research has also led to pioneering studies in bacterial envelope biogenesis
and physiology, mostly using Escherichia coli and Salmonella as model systems.
In this review, we will focus on the fundamental knowledge we have gained from
studies of the complex structure of the LPS molecule and the biochemical
pathways for its synthesis, as well as the transport of LPS across the
bacterial envelope and its assembly at the cell
surface.”,“container-title”:“EcoSal
Plus”,“DOI”:“10.1128/ecosalplus.ESP-0001-2018”,“issue”:“1”,“note”:“publisher:
American Society for Microbiology”,“source”:“journals.asm.org
(Atypon)”,“title”:“Function and Biogenesis of
Lipopolysaccharides”,“URL”:“https://journals.asm.org/doi/10.1128/ecosalplus.ESP-0001-2018”,“volume”:“8”,“author”:[{“family”:“Bertani”,“given”:“Blake”},{“family”:“Ruiz”,“given”:“Natividad”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2018",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
</u><![endif]–>5<!–[if supportFields]><u></u><![endif]–><o:p></o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm;text-indent:36.0pt'><o:p> </o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm;text-indent:36.0pt'><o:p> </o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm'><o:p> </o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm'><o:p> </o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm'><o:p> </o:p><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
12.0pt;margin-left:0cm'><o:p> </o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.0 LPS synthesis<o:p></o:p>'<p class=MsoNormal>The
LPS biosynthesis pathway is crucial for the structural makeup of gram-negative
bacteria’s outer membrane<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“duQKHHWi”,“properties”:{“formattedCitation”:“\\super
8\\nosupersub{}”,“plainCitation”:“8”,“noteIndex”:0},“citationItems”:[{“id”:638,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/ZRPN7M3N”],“itemData”:{“id”:638,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
that constitutes the outer leaflet of the outer membrane of most Gram-negative
bacteria is referred to as an endotoxin. It is comprised of a hydrophilic polysaccharide
and a hydrophobic component referred to as lipid A. Lipid A is responsible for
the major bioactivity of endotoxin, and is recognized by immune cells as a
pathogen-associated molecule. Most enzymes and genes coding for proteins
responsible for the biosynthesis and export of lipopolysaccharide in
Escherichia coli have been identified, and they are shared by most
Gram-negative bacteria based on genetic information. The detailed structure of
lipopolysaccharide differs from one bacterium to another, consistent with the
recent discovery of additional enzymes and gene products that can modify the
basic structure of lipopolysaccharide in some bacteria, especially pathogens.
These modifications are not required for survival, but are tightly regulated in
the cell and closely related to the virulence of bacteria. In this review we
discuss recent studies of the biosynthesis and export of lipopolysaccharide,
and the relationship between the structure of lipopolysaccharide and the
virulence of bacteria.”,“container-title”:“Progress in
Lipid
Research”,“DOI”:“10.1016/j.plipres.2009.06.002”,“ISSN”:“0163-7827”,“issue”:“2”,“journalAbbreviation”:“Progress
in Lipid Research”,“language”:“en”,“page”:“97-107”,“source”:“ScienceDirect”,“title”:“Lipopolysaccharide:
Biosynthetic pathway and structure
modification”,“title-short”:“Lipopolysaccharide”,“URL”:“https://www.sciencedirect.com/science/article/pii/S0163782709000526”,“volume”:“49”,“author”:[{“family”:“Wang”,“given”:“Xiaoyuan”},{“family”:“Quinn”,“given”:“Peter
J.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",4,1}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>8<!–[if supportFields]><![endif]–> (Wang & Quinn, 2010). Reflected
in the structure of LPS, its synthesis is dependent on the formation of its
three regions: Lipid A, the core oligosaccharide, and the O-antigen. LPS
synthesis occurs within the cytoplasm along the inner membrane surface.<o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.1 Lipid A synthesis<o:p></o:p>
'<p class=MsoNormal>The
LPS biosynthesis starts with the conserved pathway of lipid A synthesis as
displayed in <b style='mso-bidi-font-weight:normal'>Figure X '</span><!–[if supportFields]><b
style='mso-bidi-font-weight:normal'> ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“2I1GZm5a”,“properties”:{“formattedCitation”:“\\super
9\\nosupersub{}”,“plainCitation”:“9”,“noteIndex”:0},“citationItems”:[{“id”:642,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/WA5WMMWJ”],“itemData”:{“id”:642,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
molecules represent a unique family of glycolipids based on a highly conserved
lipid moiety known as lipid A. These molecules are produced by most
gram-negative bacteria, in which they play important roles in the integrity of
the outer-membrane permeability barrier and participate extensively in
host?pathogen interplay. Few bacteria contain lipopolysaccharide molecules
composed only of lipid A. In most forms, lipid A is glycosylated by addition of
the core oligosaccharide that, in some bacteria, provides an attachment site
for a long-chain O-antigenic polysaccharide. The complexity of
lipopolysaccharide structures is reflected in the processes used for their
biosynthesis and export. Rapid growth and cell division depend on the bacterial
cell's capacity to synthesize and export lipopolysaccharide efficiently and in
large amounts. We review recent advances in those processes, emphasizing the
reactions that are essential for
viability.”,“container-title”:“Annual Review of
Biochemistry”,“DOI”:“10.1146/annurev-biochem-060713-035600”,“ISSN”:“0066-4154”,“issue”:“1”,“journalAbbreviation”:“Annu.
Rev. Biochem.”,“note”:“publisher: Annual
Reviews”,“page”:“99-128”,“title”:“Biosynthesis
and Export of Bacterial
Lipopolysaccharides”,“URL”:“https://doi.org/10.1146/annurev-biochem-060713-035600”,“volume”:“83”,“author”:[{“family”:“Whitfield”,“given”:“Chris”},{“family”:“Trent”,“given”:“M.
Stephen”}],“accessed”:{“date-parts”:"2023",2,2},“issued”:{“date-parts”:"2014",6,2}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
'<![endif]–>9<!–[if supportFields]><b
style='mso-bidi-font-weight:normal'>'<![endif]–> (Whitfield & Trent, 2014). This
pathway begins with a UDP-N-acetylglucosamine (UDP-GlcNAc)
molecule<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION
{“citationID”:“TH4VaFYV”,“properties”:{“formattedCitation”:“\\super
8\\nosupersub{}”,“plainCitation”:“8”,“noteIndex”:0},“citationItems”:[{“id”:638,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/ZRPN7M3N”],“itemData”:{“id”:638,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
that constitutes the outer leaflet of the outer membrane of most Gram-negative
bacteria is referred to as an endotoxin. It is comprised of a hydrophilic
polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is
responsible for the major bioactivity of endotoxin, and is recognized by immune
cells as a pathogen-associated molecule. Most enzymes and genes coding for
proteins responsible for the biosynthesis and export of lipopolysaccharide in
Escherichia coli have been identified, and they are shared by most
Gram-negative bacteria based on genetic information. The detailed structure of
lipopolysaccharide differs from one bacterium to another, consistent with the
recent discovery of additional enzymes and gene products that can modify the
basic structure of lipopolysaccharide in some bacteria, especially pathogens.
These modifications are not required for survival, but are tightly regulated in
the cell and closely related to the virulence of bacteria. In this review we
discuss recent studies of the biosynthesis and export of lipopolysaccharide,
and the relationship between the structure of lipopolysaccharide and the
virulence of bacteria.”,“container-title”:“Progress in
Lipid Research”,“DOI”:“10.1016/j.plipres.2009.06.002”,“ISSN”:“0163-7827”,“issue”:“2”,“journalAbbreviation”:“Progress
in Lipid
Research”,“language”:“en”,“page”:“97-107”,“source”:“ScienceDirect”,“title”:“Lipopolysaccharide:
Biosynthetic pathway and structure
modification”,“title-short”:“Lipopolysaccharide”,“URL”:“https://www.sciencedirect.com/science/article/pii/S0163782709000526”,“volume”:“49”,“author”:[{“family”:“Wang”,“given”:“Xiaoyuan”},{“family”:“Quinn”,“given”:“Peter
J.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",4,1}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>8<!–[if supportFields]><![endif]–> (Wang & Quinn, 2010). Lipid A
synthesis involves the addition of hydrophobic fatty acid chains to UDP-GlcNAc catalyzed by LpxA, LpxC and LpxD, forming
UDP-diacyl-GlcN. Although the biosynthesis begins with the
acylation of UDP-GlcNAc, catalyzed by LpxA, this reaction is thermodynamically unfavourable<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION
{“citationID”:“8vx6d2Gc”,“properties”:{“formattedCitation”:“\\super
10\\nosupersub{}”,“plainCitation”:“10”,“noteIndex”:0},“citationItems”:[{“id”:632,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/W6EZIQHQ”],“itemData”:{“id”:632,“type”:“article-journal”,“abstract”:“Multi-drug
resistant (MDR), pathogenic Gram-negative bacteria pose a serious health
threat, and novel antibiotic targets must be identified to combat MDR infections.
One promising target is the zinc-dependent metalloamidase
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC), which
catalyzes the committed step of lipid A (endotoxin) biosynthesis. LpxC is an
essential, single copy gene that is conserved in virtually all Gram-negative
bacteria. LpxC structures, revealed by NMR and X-ray crystallography,
demonstrate that LpxC adopts a novel ‘β-α-α-β sandwich’
fold and encapsulates the acyl chain of the substrate with a unique hydrophobic
passage. Kinetic analysis revealed that LpxC functions by a general acid-base
mechanism, with a glutamate serving as the general base. Many potent LpxC inhibitors have been
identified, and most contain a hydroxamate group targeting the catalytic zinc
ion. Although early LpxC-inhibitors were either narrow-spectrum antibiotics or
broad-spectrum in vitro LpxC inhibitors with limited antibiotic properties, the
recently discovered compound CHIR-090 is a powerful antibiotic that controls
the growth of Escherichia coli and Pseudomonas aeruginosa, with an efficacy
rivaling that of the FDA-approved antibiotic ciprofloxacin. CHIR-090 inhibits a
wide range of LpxC enzymes with sub-nanomolar affinity in vitro, and is a
two-step, slow, tight-binding inhibitor of Aquifex aeolicus and E. coli LpxC.
The success of CHIR-090 suggests that potent LpxCtargeting antibiotics may be
developed to control a broad range of Gram-negative
bacteria.”,“container-title”:“Current Pharmaceutical
Biotechnology”,“issue”:“1”,“language”:“en”,“page”:“9-15”,“source”:“www.eurekaselect.com”,“title”:“Mechanism
and Inhibition of LpxC: An Essential Zinc-Dependent Deacetylase of Bacterial
Lipid A Synthesis”,“title-short”:“Mechanism and Inhibition
of
LpxC”,“URL”:“https://www.eurekaselect.com/article/11296”,“volume”:“9”,“author”:[{“family”:“Zhou”,“given”:“Pei”},{“family”:“Barb”,“given”:“Adam
W.”}],“accessed”:{“date-parts”:"2023",2,1}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>10<!–[if supportFields]><![endif]–> (Barb & Zhou, 2008). Thus, the first committed step
of lipid A biosynthesis is the deacetylation reaction catalyzed by LpxC. LpxC is a crucial enzyme as it catalyzes
the non-reversible step in lipid A synthesis which is the deacetylation of UDP-3-O-(acyl)-GlcNAc. LpxC also has a unique
sequence compared to other deacetylases and plays a regulatory role in lipid A
biosynthesis, which makes it an attractive target for antibiotic development<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“8KyB55he”,“properties”:{“formattedCitation”:“\\super
8\\nosupersub{}”,“plainCitation”:“8”,“noteIndex”:0},“citationItems”:[{“id”:638,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/ZRPN7M3N”],“itemData”:{“id”:638,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
that constitutes the outer leaflet of the outer membrane of most Gram-negative
bacteria is referred to as an endotoxin. It is comprised of a hydrophilic
polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is
responsible for the major bioactivity of endotoxin, and is recognized by immune
cells as a pathogen-associated molecule. Most enzymes and genes coding for
proteins responsible for the biosynthesis and export of lipopolysaccharide in
Escherichia coli have been identified, and they are shared by most
Gram-negative bacteria based on genetic information. The detailed structure of
lipopolysaccharide differs from one bacterium to another, consistent with the
recent discovery of additional enzymes and gene products that can modify the
basic structure of lipopolysaccharide in some bacteria, especially pathogens.
These modifications are not required for survival, but are tightly regulated in
the cell and closely related to the virulence of bacteria. In this review we
discuss recent studies of the biosynthesis and export of lipopolysaccharide,
and the relationship between the structure of lipopolysaccharide and the
virulence of bacteria.”,“container-title”:“Progress in
Lipid Research”,“DOI”:“10.1016/j.plipres.2009.06.002”,“ISSN”:“0163-7827”,“issue”:“2”,“journalAbbreviation”:“Progress
in Lipid
Research”,“language”:“en”,“page”:“97-107”,“source”:“ScienceDirect”,“title”:“Lipopolysaccharide:
Biosynthetic pathway and structure
modification”,“title-short”:“Lipopolysaccharide”,“URL”:“https://www.sciencedirect.com/science/article/pii/S0163782709000526”,“volume”:“49”,“author”:[{“family”:“Wang”,“given”:“Xiaoyuan”},{“family”:“Quinn”,“given”:“Peter
J.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",4,1}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>8<!–[if supportFields]><![endif]–> (Wang & Quinn, 2010). Following
LpxD action, UDP-diacyl-GlcN
undergoes a series of reactions catalyzed by three other enzymes, LpxH, LpxB and LpxK, to compose lipid IVA. Two Kdo molecules
are added to Lipid IVA, catalyzed by the bifunctional KdtA. Kdo2-LipidIVA is further
modified with acyltransferases, LpxL and LpxM, to form Kdo2-Lipid A. Kdo2-Lipid A is the active form
that is used for the addition of core oligosaccharides and overall assembly of
LPS.<o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.2 Core Oligosaccharides
synthesis/addition<o:p></o:p>
'<p class=MsoNormal>The
core oligosaccharides are added to lipid A on the cytoplasmic surface of the
inner membrane through membrane-bound glycosyltransferases and nucleotide sugar
donors<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION
{“citationID”:“Hvjl9LDm”,“properties”:{“formattedCitation”:“\\super
8\\nosupersub{}”,“plainCitation”:“8”,“noteIndex”:0},“citationItems”:[{“id”:638,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/ZRPN7M3N”],“itemData”:{“id”:638,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
that constitutes the outer leaflet of the outer membrane of most Gram-negative
bacteria is referred to as an endotoxin. It is comprised of a hydrophilic
polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is
responsible for the major bioactivity of endotoxin, and is recognized by immune
cells as a pathogen-associated molecule. Most enzymes and genes coding for
proteins responsible for the biosynthesis and export of lipopolysaccharide in
Escherichia coli have been identified, and they are shared by most Gram-negative
bacteria based on genetic information. The detailed structure of
lipopolysaccharide differs from one bacterium to another, consistent with the
recent discovery of additional enzymes and gene products that can modify the
basic structure of lipopolysaccharide in some bacteria, especially pathogens.
These modifications are not required for survival, but are tightly regulated in
the cell and closely related to the virulence of bacteria. In this review we
discuss recent studies of the biosynthesis and export of lipopolysaccharide,
and the relationship between the structure of lipopolysaccharide and the
virulence of bacteria.”,“container-title”:“Progress in
Lipid Research”,“DOI”:“10.1016/j.plipres.2009.06.002”,“ISSN”:“0163-7827”,“issue”:“2”,“journalAbbreviation”:“Progress
in Lipid
Research”,“language”:“en”,“page”:“97-107”,“source”:“ScienceDirect”,“title”:“Lipopolysaccharide:
Biosynthetic pathway and structure modification”,“title-short”:“Lipopolysaccharide”,“URL”:“https://www.sciencedirect.com/science/article/pii/S0163782709000526”,“volume”:“49”,“author”:[{“family”:“Wang”,“given”:“Xiaoyuan”},{“family”:“Quinn”,“given”:“Peter
J.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",4,1}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>8<!–[if supportFields]><![endif]–> (Wang & Quinn, 2010). The core
oligosaccharides have two components: the inner core and the outer core. The
inner core is the conserved region of the core oligosaccharides and includes Kdo molecules as well as the L-glycero-D-manno-heptose molecule (Hep)<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“9jd2Utu1”,“properties”:{“formattedCitation”:“\\super
9\\nosupersub{}”,“plainCitation”:“9”,“noteIndex”:0},“citationItems”:[{“id”:642,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/WA5WMMWJ”],“itemData”:{“id”:642,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
molecules represent a unique family of glycolipids based on a highly conserved
lipid moiety known as lipid A. These molecules are produced by most
gram-negative bacteria, in which they play important roles in the integrity of
the outer-membrane permeability barrier and participate extensively in
host?pathogen interplay. Few bacteria contain lipopolysaccharide molecules
composed only of lipid A. In most forms, lipid A is glycosylated by addition of
the core oligosaccharide that, in some bacteria, provides an attachment site
for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide
structures is reflected in the processes used for their biosynthesis and
export. Rapid growth and cell division depend on the bacterial cell's capacity
to synthesize and export lipopolysaccharide efficiently and in large amounts.
We review recent advances in those processes, emphasizing the reactions that
are essential for viability.”,“container-title”:“Annual
Review of
Biochemistry”,“DOI”:“10.1146/annurev-biochem-060713-035600”,“ISSN”:“0066-4154”,“issue”:“1”,“journalAbbreviation”:“Annu.
Rev. Biochem.”,“note”:“publisher: Annual
Reviews”,“page”:“99-128”,“title”:“Biosynthesis
and Export of Bacterial
Lipopolysaccharides”,“URL”:“https://doi.org/10.1146/annurev-biochem-060713-035600”,“volume”:“83”,“author”:[{“family”:“Whitfield”,“given”:“Chris”},{“family”:“Trent”,“given”:“M.
Stephen”}],“accessed”:{“date-parts”:"2023",2,2},“issued”:{“date-parts”:"2014",6,2}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>9<!–[if supportFields]><![endif]–> (Whitfield & Trent, 2014). The
formation and attachment of Hep are mediated by enzymes synthesized by the <i style='mso-bidi-font-style:normal'>gmhD</span><i
style='mso-bidi-font-style:normal'>
operon. On the other hand, the outer
core region is less conserved. The outer core oligosaccharides are synthesized
by gene products of the waaQ operons.<o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.3 O-antigen addition<o:p></o:p>'<p class=MsoNormal>The
O-antigen polymers are added to the outer core oligosaccharides through
glycosyltransferases and nucleotide sugar donors<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“TLflZagS”,“properties”:{“formattedCitation”:“\\super
8\\nosupersub{}”,“plainCitation”:“8”,“noteIndex”:0},“citationItems”:[{“id”:638,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/ZRPN7M3N”],“itemData”:{“id”:638,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
that constitutes the outer leaflet of the outer membrane of most Gram-negative
bacteria is referred to as an endotoxin. It is comprised of a hydrophilic
polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is
responsible for the major bioactivity of endotoxin, and is recognized by immune
cells as a pathogen-associated molecule. Most enzymes and genes coding for
proteins responsible for the biosynthesis and export of lipopolysaccharide in
Escherichia coli have been identified, and they are shared by most
Gram-negative bacteria based on genetic information. The detailed structure of
lipopolysaccharide differs from one bacterium to another, consistent with the
recent discovery of additional enzymes and gene products that can modify the
basic structure of lipopolysaccharide in some bacteria, especially pathogens.
These modifications are not required for survival, but are tightly regulated in
the cell and closely related to the virulence of bacteria. In this review we
discuss recent studies of the biosynthesis and export of lipopolysaccharide,
and the relationship between the structure of lipopolysaccharide and the
virulence of bacteria.”,“container-title”:“Progress in Lipid
Research”,“DOI”:“10.1016/j.plipres.2009.06.002”,“ISSN”:“0163-7827”,“issue”:“2”,“journalAbbreviation”:“Progress
in Lipid Research”,“language”:“en”,“page”:“97-107”,“source”:“ScienceDirect”,“title”:“Lipopolysaccharide:
Biosynthetic pathway and structure modification”,“title-short”:“Lipopolysaccharide”,“URL”:“https://www.sciencedirect.com/science/article/pii/S0163782709000526”,“volume”:“49”,“author”:[{“family”:“Wang”,“given”:“Xiaoyuan”},{“family”:“Quinn”,“given”:“Peter
J.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2010",4,1}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>8<!–[if supportFields]><![endif]–> (Wang & Quinn, 2010). The <i style='mso-bidi-font-style:normal'>rfb
</span> gene cluster
enzyme derivatives contribute to O-antigen diversity through the creation of
enzymes for varying sugar-nucleotide precursors. The <i
style='mso-bidi-font-style:normal'>rfb
</span> operon also synthesizes
glycosyltransferases, polymerases, and proteins needed for O-antigen transport
through the inner membrane.<o:p></o:p></span><p class=MsoNormal style='margin-bottom:12.0pt'> <!–[if gte vml 1]><v:shape id=“image1.png” o:spid=“_x0000_i1033”
type=“#_x0000_t75” style='width:468pt;height:328pt;visibility:visible;
mso-wrap-style:square'><v:imagedata src=“Wiki%20Draft%20(1)_files/image003.png” o:title=“”/></v:shape><![endif]–><![if !vml]><img border=0 width=624 height=437
src=“Wiki%20Draft%20(1)_files/image004.gif” v:shapes=“image1.png”><![endif]><o:p></o:p><p class=MsoNormal style='margin-bottom:12.0pt'><b style='mso-bidi-font-weight:
normal'>Figure X
': Kdo2-Lipid A synthesis, the first
part of LPS synthesis. Kdo2-Lipid A synthesis involves the first committed step
in LPS synthesis, catalyzed by LpxC, which is the
deacetylation of UDP-3-O-(acyl)-GlcNAc (red box)<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“IUPlTF6N”,“properties”:{“formattedCitation”:“\\super
11\\nosupersub{}”,“plainCitation”:“11”,“noteIndex”:0},“citationItems”:[{“id”:636,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/KN5AUCNU”],“itemData”:{“id”:636,“type”:“article-journal”,“abstract”:“UDP-N-acetylglucosamine
(UDP-GlcNAc) acyltransferase (LpxA) catalyzes the first step of lipid A
biosynthesis, the reversible transfer of the R-3-hydroxyacyl chain from
R-3-hydroxyacyl acyl carrier protein to the glucosamine 3-OH group of
UDP-GlcNAc. Escherichia coli LpxA is highly selective for R-3-hydroxymyristate.
The crystal structure of the E. coli LpxA homotrimer, determined previously in
the absence of lipid substrates or products, revealed that LpxA contains an
unusual, left-handed parallel β-helix fold. We have now solved the crystal
structures of E. coli LpxA with the bound product
UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc at a resolution of 1.74 Å and with bound
UDP-3-O-(R-3-hydroxydecanoyl)-GlcNAc at 1.85 Å. The structures of these
complexes are consistent with the catalytic mechanism deduced by mutagenesis
and with a recent 3.0-Å structure of LpxA with bound UDP-GlcNAc. Our structures
show how LpxA selects for 14-carbon R-3-hydroxyacyl chains and reveal two modes
of UDP binding.”,“container-title”:“Proceedings of the
National Academy of
Sciences”,“DOI”:“10.1073/pnas.0705833104”,“issue”:“34”,“note”:“publisher:
Proceedings of the National Academy of
Sciences”,“page”:“13543-13550”,“source”:“pnas.org
(Atypon)”,“title”:“Structural basis for the acyl chain
selectivity and mechanism of UDP-N-acetylglucosamine
acyltransferase”,“URL”:“https://www.pnas.org/doi/full/10.1073/pnas.0705833104”,“volume”:“104”,“author”:[{“family”:“Williams”,“given”:“Allison
H.”},{“family”:“Raetz”,“given”:“Christian
R. H.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2007",8,21}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>11<!–[if supportFields]><![endif]–> (Williams & Raetz,
2007). <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>LPS
transport <o:p></o:p>'<p class=MsoNormal> <o:p></o:p><p class=MsoNormal>LPS transport begins with the movement of LPS
from the inner membrane to the outer membrane and involves MsbA
translocation (Sperandeo et al., 2017). MsbAflippase catalyzes the
flipping of the Lipid A core moiety across the inner membrane. Following
complete synthesis, the movement of the mature LPS molecule to the cell surface
is assisted by the LPT molecular machine. Broadly, the transport of LPS from
the inner membrane to the outer membrane can be divided into three key steps:
LPS detachment from the inner membrane, LPS transport across the periplasm, and
LPS insertion and assembly in the outer membrane at the cell surface (Sperandeo et al., 2017). <p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>Regulation
<o:p></o:p>
'<p class=MsoNormal> <o:p></o:p><p class=MsoNormal>LPS
assembly begins on the internal surface of the <i
style='mso-bidi-font-style:normal'>E.coli</span> membrane. The rate of LPS
assembly is controlled by LpxC. Prior to the
completion of LPS biosynthesis, the lipid undergoes further modifications when
it is flipped to the external surface of the inner membrane. Following
synthesis completion, LPS is transported to the outer membrane’s external
surface via a protein bridge that connects both the inner and outer membranes</span><!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“vnUtrtYB”,“properties”:{“formattedCitation”:“\\super
2\\nosupersub{}”,“plainCitation”:“2”,“noteIndex”:0},“citationItems”:[{“id”:617,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M”],“itemData”:{“id”:617,“type”:“article-journal”,“abstract”:“PbgA
proteins controls lipopolysaccharide synthesis in Escherichia
coli.”,“container-title”:“Nature”,“DOI”:“10.1038/d41586-020-02256-x”,“issue”:“7821”,“language”:“en”,“license”:“2021
Nature”,“note”:“Bandiera_abtest: a\nCg_type: News And
Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term:
Structural biology,
Microbiology”,“page”:“348-349”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of a lipopolysaccharide regulator reveals a road to new
antibiotics”,“URL”:“http://www.nature.com/articles/d41586-020-02256-x”,“volume”:“584”,“author”:[{“family”:“Bishop”,“given”:“Russell
E.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>2<!–[if supportFields]><![endif]–> (Bishop, 2020). <o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal>Feedback
inhibition is a key cellular control mechanism where the activity of a key
enzyme within a pathway is inhibited by that same enzyme's end
product(s). This control mechanism is essential in controlling and
regulating LPS biosynthesis. It is currently unknown but it has been suspected
that LPS or a precursor of LPS is the feedback signal responsible for LPS
regulation<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION {“citationID”:“EPagjeP8”,“properties”:{“formattedCitation”:“\\super
2\\nosupersub{}”,“plainCitation”:“2”,“noteIndex”:0},“citationItems”:[{“id”:617,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M”],“itemData”:{“id”:617,“type”:“article-journal”,“abstract”:“PbgA
proteins controls lipopolysaccharide synthesis in Escherichia
coli.”,“container-title”:“Nature”,“DOI”:“10.1038/d41586-020-02256-x”,“issue”:“7821”,“language”:“en”,“license”:“2021
Nature”,“note”:“Bandiera_abtest: a\nCg_type: News And
Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term:
Structural biology,
Microbiology”,“page”:“348-349”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of a lipopolysaccharide regulator reveals a road to new
antibiotics”,“URL”:“http://www.nature.com/articles/d41586-020-02256-x”,“volume”:“584”,“author”:[{“family”:“Bishop”,“given”:“Russell
E.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>2<!–[if supportFields]><![endif]–> (Bishop, 2020).<o:p></o:p><p class=MsoNormal><!–[if gte vml 1]><v:shape id=“image4.png” o:spid=“_x0000_i1032”
type=“#_x0000_t75” style='width:467.5pt;height:200.5pt;visibility:visible;
mso-wrap-style:square'><v:imagedata src=“Wiki%20Draft%20(1)_files/image005.png” o:title=“”/></v:shape><![endif]–><![if !vml]><img border=0 width=623 height=267
src=“Wiki%20Draft%20(1)_files/image006.gif” v:shapes=“image4.png”><![endif]> <o:p></o:p><p class=MsoNormal> There are 3 scenarios involving LPS
biosynthesis that will be discussed:
typical LPS biosynthesis, LPS excess, and LPS deficiency. <o:p></o:p><p class=MsoNormal><o:p> </o:p><p class=MsoNormal>Beginning
with normal LPS synthesis that takes place within the cell cytoplasm, the
enzyme LpxC controls the biosynthesis of LPS while
utilizing precursors located in the cytoplasm .
Following biosynthesis, the immature LPS is flipped onto the external surface
of the inner membrane and is then transported to the outer membrane. The FtsH enzyme, guided by interactions with LapB, degrades LpxC which
disrupts LPS biosynthesis<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“OZBbxks7”,“properties”:{“formattedCitation”:“\\super
2\\nosupersub{}”,“plainCitation”:“2”,“noteIndex”:0},“citationItems”:[{“id”:617,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M”],“itemData”:{“id”:617,“type”:“article-journal”,“abstract”:“PbgA
proteins controls lipopolysaccharide synthesis in Escherichia
coli.”,“container-title”:“Nature”,“DOI”:“10.1038/d41586-020-02256-x”,“issue”:“7821”,“language”:“en”,“license”:“2021
Nature”,“note”:“Bandiera_abtest: a\nCg_type: News And
Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term:
Structural biology,
Microbiology”,“page”:“348-349”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of a lipopolysaccharide regulator reveals a road to new
antibiotics”,“URL”:“http://www.nature.com/articles/d41586-020-02256-x”,“volume”:“584”,“author”:[{“family”:“Bishop”,“given”:“Russell
E.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>2<!–[if supportFields]><![endif]–> (Bishop, 2020). However, Clairefeuille and colleagues show that a protein, PbgA, inhibits LapB-FtsH activity
to promote LPS biosynthesis (2020). <o:p></o:p><p class=MsoNormal><o:p> </o:p><p class=MsoNormal><!–[if gte vml 1]><v:shape id=“image8.png” o:spid=“_x0000_i1031”
type=“#_x0000_t75” style='width:465.5pt;height:326.5pt;visibility:visible;
mso-wrap-style:square'><v:imagedata src=“Wiki%20Draft%20(1)_files/image007.png” o:title=“”/></v:shape><![endif]–><![if !vml]><img border=0 width=621 height=435
src=“Wiki%20Draft%20(1)_files/image008.gif” v:shapes=“image8.png”><![endif]><o:p></o:p><p class=MsoNormal>Figure
_. LPS synthesis and degradation of LpxC. The enzyme LpxC controls the biosynthesis of LPS, utilizing precursors
located within the <i style='mso-bidi-font-style:normal'>E.coli
</span><i
style='mso-bidi-font-style:normal'>
cell cytoplasm. After being flipped to
the external surface of the inner membrane through an ABC transporter, the
mature LPS is transported to the outer membrane using LPT machinery. The enzyme
FtsH, aided by interactions with the protein LapB, degrades LpxC. <o:p></o:p><p class=MsoNormal><!–[if gte vml 1]><v:shape id=“image10.png” o:spid=“_x0000_i1030”
type=“#_x0000_t75” style='width:467.5pt;height:336pt;visibility:visible;
mso-wrap-style:square'><v:imagedata src=“Wiki%20Draft%20(1)_files/image009.png” o:title=“”
cropright=“494f”/></v:shape><![endif]–><![if !vml]><img border=0 width=623 height=448
src=“Wiki%20Draft%20(1)_files/image010.gif” v:shapes=“image10.png”><![endif]><o:p></o:p><p class=MsoNormal>Figure
_. Inhibition of FtsH-LapB activity. PbgA is a protein that inhibits the actions of FtsH-LapB to promote LPS biosynthesis. <o:p></o:p><p class=MsoNormal><o:p> </o:p><p class=MsoNormal>Next,
when LPS is being synthesized in excessive amounts, it will accumulate on the
external surface of the inner membrane and bind to PbgA<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“8hpU9wVs”,“properties”:{“formattedCitation”:“\\super
2\\nosupersub{}”,“plainCitation”:“2”,“noteIndex”:0},“citationItems”:[{“id”:617,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M”],“itemData”:{“id”:617,“type”:“article-journal”,“abstract”:“PbgA
proteins controls lipopolysaccharide synthesis in Escherichia
coli.”,“container-title”:“Nature”,“DOI”:“10.1038/d41586-020-02256-x”,“issue”:“7821”,“language”:“en”,“license”:“2021
Nature”,“note”:“Bandiera_abtest: a\nCg_type: News And
Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term:
Structural biology, Microbiology”,“page”:“348-349”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of a lipopolysaccharide regulator reveals a road to new
antibiotics”,“URL”:“http://www.nature.com/articles/d41586-020-02256-x”,“volume”:“584”,“author”:[{“family”:“Bishop”,“given”:“Russell
E.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>2<!–[if supportFields]><![endif]–> (Bishop, 2020). Thereby, PbgA will lessen its control on the LapB-FtsH
complex activity, allowing for the degradation of LpxC
to restore normal LPS levels.<o:p></o:p><p class=MsoNormal><!–[if gte vml 1]><v:shape id=“image9.png” o:spid=“_x0000_i1029”
type=“#_x0000_t75” style='width:468pt;height:319.5pt;visibility:visible;
mso-wrap-style:square'><v:imagedata src=“Wiki%20Draft%20(1)_files/image011.png” o:title=“”/></v:shape><![endif]–><![if !vml]><img border=0 width=624 height=426
src=“Wiki%20Draft%20(1)_files/image012.gif” v:shapes=“image9.png”><![endif]><o:p></o:p><p class=MsoNormal>Figure
_. LPS excess. When LPS is being synthesized in excess, it will begin to
accumulate on the external surface of the inner membrane and bind to PbgA. Bound to LPS, the protein will relax its inhibitory
control on FtsH-LapB to promote LpxC
degradation and therefore, restores normal LPS levels. <o:p></o:p><p class=MsoNormal><o:p> </o:p><p class=MsoNormal>There
is a truncation mutation of PbgA that leads to the
depletion of LPS. This is most likely because the mutant fails to strongly
inhibit the LapB-FtsH interaction that degrades LpxC and thereby, promotes LpxC
degradation<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION
{“citationID”:“KLS9MM71”,“properties”:{“formattedCitation”:“\\super
2\\nosupersub{}”,“plainCitation”:“2”,“noteIndex”:0},“citationItems”:[{“id”:617,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M”],“itemData”:{“id”:617,“type”:“article-journal”,“abstract”:“PbgA
proteins controls lipopolysaccharide synthesis in Escherichia
coli.”,“container-title”:“Nature”,“DOI”:“10.1038/d41586-020-02256-x”,“issue”:“7821”,“language”:“en”,“license”:“2021
Nature”,“note”:“Bandiera_abtest: a\nCg_type: News And
Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term:
Structural biology,
Microbiology”,“page”:“348-349”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of a lipopolysaccharide regulator reveals a road to new
antibiotics”,“URL”:“http://www.nature.com/articles/d41586-020-02256-x”,“volume”:“584”,“author”:[{“family”:“Bishop”,“given”:“Russell
E.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>2<!–[if supportFields]><![endif]–> (Bishop, 2020). PLs then fill in
the gaps that are left by the LPS in the outer membrane, enabling greasy
antibiotics and detergents to penetrate local PL bilayers, and large soluble
compounds to leak through transient boundary defects where LPS and the PL
phases meet<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION
{“citationID”:“xpZv7lIL”,“properties”:{“formattedCitation”:“\\super
2\\nosupersub{}”,“plainCitation”:“2”,“noteIndex”:0},“citationItems”:[{“id”:617,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M”],“itemData”:{“id”:617,“type”:“article-journal”,“abstract”:“PbgA
proteins controls lipopolysaccharide synthesis in Escherichia coli.”,“container-title”:“Nature”,“DOI”:“10.1038/d41586-020-02256-x”,“issue”:“7821”,“language”:“en”,“license”:“2021
Nature”,“note”:“Bandiera_abtest: a\nCg_type: News And
Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term:
Structural biology, Microbiology”,“page”:“348-349”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of a lipopolysaccharide regulator reveals a road to new
antibiotics”,“URL”:“http://www.nature.com/articles/d41586-020-02256-x”,“volume”:“584”,“author”:[{“family”:“Bishop”,“given”:“Russell
E.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>2<!–[if supportFields]><![endif]–> (Bishop, 2020).<o:p></o:p><p class=MsoNormal><o:p> </o:p><p class=MsoNormal><!–[if gte vml 1]><v:shape id=“image7.png” o:spid=“_x0000_i1028”
type=“#_x0000_t75” style='width:455.5pt;height:319.5pt;visibility:visible;
mso-wrap-style:square'><v:imagedata src=“Wiki%20Draft%20(1)_files/image013.png” o:title=“”/></v:shape><![endif]–><![if !vml]><img border=0 width=607 height=426
src=“Wiki%20Draft%20(1)_files/image014.gif” v:shapes=“image7.png”><![endif]><o:p></o:p><p class=MsoNormal style='margin-bottom:12.0pt'> Figure_. PbgA truncation mutation leads to LPS depletion. A
depletion of LPS occurs when there is a PbgA
truncation mutation, most likely due to the mutant failing to inhibit FtsH-LapB strongly enough. Therefore, PLs will attempt to
fill in the gaps left by the depletion of LPS in the outer membrane. This
enables greasy antibiotics and detergents to penetrate as well as large soluble
compounds to leak through. <o:p></o:p><p class=MsoNormal><a
href=“https://journals.asm.org/doi/10.1128/ecosalplus.ESP-0001-2018”>https://journals.asm.org/doi/10.1128/ecosalplus.ESP-0001-2018</a><u><o:p></o:p></u><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X: PbgA<o:p></o:p>'<p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.1 PbgA
Structure <o:p></o:p>
'<p class=MsoNormal> <o:p></o:p><p class=MsoNormal>PbgA, also known as YejM, is an
essential protein in <i style='mso-bidi-font-style:normal'>E. coli that is
required for regulating LPS synthesis and maintaining membrane homeostasis</span><!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“UlToei0B”,“properties”:{“formattedCitation”:“\\super
12\\nosupersub{}”,“plainCitation”:“12”,“noteIndex”:0},“citationItems”:[{“id”:628,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/K232PHWH”],“itemData”:{“id”:628,“type”:“article-journal”,“abstract”:“Gram-negative
bacteria produce an asymmetric outer membrane (OM) that is particularly
impermeant to many antibiotics and characterized by lipopolysaccharide (LPS)
exclusively at the cell surface. LPS biogenesis remains an ideal target for
therapeutic intervention, as disruption could kill bacteria or increase
sensitivity to existing antibiotics. While it has been known that LPS synthesis
is regulated by proteolytic control of LpxC, the enzyme that catalyzes the
first committed step of LPS synthesis, it remains unknown which signals direct
this regulation. New details have been revealed during study of a cryptic
essential inner membrane protein, YejM. Multiple functions have been proposed
over the years for YejM, including a controversial hypothesis that it
transports cardiolipin from the inner membrane to the OM. Strong evidence now
indicates that YejM senses LPS in the periplasm and directs proteolytic
regulation. Here, we discuss the standing literature of YejM and highlight
exciting new insights into cell envelope
maintenance.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.02624-20”,“issue”:“6”,“note”:“publisher:
American Society for
Microbiology”,“page”:“e02624-20”,“source”:“journals.asm.org
(Atypon)”,“title”:“Restoring Balance to the Outer Membrane:
YejM’s Role in LPS Regulation”,“title-short”:“Restoring
Balance to the Outer
Membrane”,“URL”:“https://journals.asm.org/doi/10.1128/mBio.02624-20”,“volume”:“11”,“author”:[{“family”:“Simpson”,“given”:“Brent
W.”},{“family”:“Douglass”,“given”:“Martin
V.”},{“family”:“Trent”,“given”:“M.
Stephen”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",12,15}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>12<!–[if supportFields]><![endif]–> (Simpson et al., 2020). <o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal>As
shown in Figure X, PbgA is an inner membrane protein
with a five-transmembrane-domain N terminus (residues 1-190) that is essential
for growth and a nonessential C-terminal periplasmic domain (residues 191-586).
Nonsense mutations that cause truncations in the periplasmic domain in PbgA cause phenotypes consistent with defects in outer membrane
assembly, including reduced LPS/PL ratio, vancomycin sensitivity, temperature
sensitivity, and leakage of periplasmic proteins<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“KISnKvoZ”,“properties”:{“formattedCitation”:“\\super
3\\nosupersub{}”,“plainCitation”:“3”,“noteIndex”:0},“citationItems”:[{“id”:619,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/HWCQ9FUI”],“itemData”:{“id”:619,“type”:“article-journal”,“abstract”:“Gram-negative
bacteria are surrounded by a complex cell envelope that includes two membranes.
The outer membrane prevents many drugs from entering these cells and is thus a
major determinant of their intrinsic antibiotic resistance. This barrier
function is imparted by the asymmetric architecture of the membrane with
lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet.
The LPS and phospholipid synthesis pathways share an intermediate. Proper
membrane biogenesis therefore requires that the flux through each pathway be
balanced. In Escherichia coli, a major control point in establishing this
balance is the committed step of LPS synthesis mediated by LpxC. Levels of this
enzyme are controlled through its degradation by the inner membrane protease
FtsH and its presumed adapter protein LapB (YciM). How turnover of LpxC is
controlled has remained unclear for many years. Here, we demonstrate that the
essential protein of unknown function YejM (PbgA) participates in this
regulatory pathway. Suppressors of YejM essentiality were identified in lpxC
and lapB, and LpxC overproduction was shown to be sufficient to allow survival
of ΔyejM mutants. Furthermore, the stability of LpxC was shown to be
reduced in cells lacking YejM, and genetic and physical interactions between
LapB and YejM were detected. Taken together, our results are consistent with a
model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate
LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane
is a major determinant of the intrinsic antibiotic resistance of Gram-negative
bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid, and
the synthesis of these lipid species must be balanced for the membrane to
maintain its barrier function in blocking drug entry. In this study, we
identified an essential protein of unknown function as a key new factor in modulating
LPS synthesis in the model bacterium Escherichia coli. Our results provide
novel insight into how this organism and most likely other Gram-negative
bacteria maintain membrane homeostasis and their intrinsic resistance to
antibiotics.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.00939-20”,“issue”:“3”,“note”:“publisher:
American Society for
Microbiology”,“page”:“e00939-20”,“source”:“journals.asm.org
(Atypon)”,“title”:“An Essential Membrane Protein Modulates
the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia
coli”,“URL”:“https://journals.asm.org/doi/10.1128/mBio.00939-20”,“volume”:“11”,“author”:[{“family”:“Fivenson”,“given”:“Elayne
M.”},{“family”:“Bernhardt”,“given”:“Thomas
G.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",5,19}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>3<!–[if supportFields]><![endif]–> (Fivenson
& Bernhardt, 2020). <o:p></o:p><p class=MsoNormal><o:p> </o:p><p class=MsoNormal><!–[if gte vml 1]><v:shape id=“image6.png” o:spid=“_x0000_i1027”
type=“#_x0000_t75” style='width:269pt;height:259pt;visibility:visible;
mso-wrap-style:square'><v:imagedata src=“Wiki%20Draft%20(1)_files/image015.png” o:title=“”/></v:shape><![endif]–><![if !vml]><img border=0 width=359 height=345
src=“Wiki%20Draft%20(1)_files/image016.gif” v:shapes=“image6.png”><![endif]><o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>Figure X: Pymol
structure of PbgA. <o:p></o:p>
'<p class=MsoNormal>Crystal
structure of PbgA, an essential inner transmembrane
protein in <i style='mso-bidi-font-style:normal'>E. coli that is used for
regulating LPS synthesis and outer membrane homeostasis. The C-terminal
periplasmic domain is depicted in green. The N-terminal domain is a
five-transmembrane domain depicted in red, yellow, orange, purple, and cyan. <o:p></o:p></span><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.2 PbgA
protein similarity <o:p></o:p>
'<p class=MsoNormal>PbgA is structurally related to LtaS,
an enzyme found in many gram-positive bacteria that synthesizes lipoteichoic
acids. PbgA, like LtaS,
contains a hydrophobic binding pocket in its periplasmic domain that is required
for protein activity. However, the crystal structure of the PbgA
domain indicates that it lacks residues required for LtaS
catalytic activity, so it is unlikely to have a homologous enzymatic function<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“Igh9S5xC”,“properties”:{“formattedCitation”:“\\super
3\\nosupersub{}”,“plainCitation”:“3”,“noteIndex”:0},“citationItems”:[{“id”:619,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/HWCQ9FUI”],“itemData”:{“id”:619,“type”:“article-journal”,“abstract”:“Gram-negative
bacteria are surrounded by a complex cell envelope that includes two membranes.
The outer membrane prevents many drugs from entering these cells and is thus a
major determinant of their intrinsic antibiotic resistance. This barrier
function is imparted by the asymmetric architecture of the membrane with
lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner
leaflet. The LPS and phospholipid synthesis pathways share an intermediate.
Proper membrane biogenesis therefore requires that the flux through each
pathway be balanced. In Escherichia coli, a major control point in establishing
this balance is the committed step of LPS synthesis mediated by LpxC. Levels of
this enzyme are controlled through its degradation by the inner membrane
protease FtsH and its presumed adapter protein LapB (YciM). How turnover of
LpxC is controlled has remained unclear for many years. Here, we demonstrate
that the essential protein of unknown function YejM (PbgA) participates in this
regulatory pathway. Suppressors of YejM essentiality were identified in lpxC
and lapB, and LpxC overproduction was shown to be sufficient to allow survival
of ΔyejM mutants. Furthermore, the stability of LpxC was shown to be
reduced in cells lacking YejM, and genetic and physical interactions between
LapB and YejM were detected. Taken together, our results are consistent with a
model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate
LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane
is a major determinant of the intrinsic antibiotic resistance of Gram-negative
bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid, and
the synthesis of these lipid species must be balanced for the membrane to
maintain its barrier function in blocking drug entry. In this study, we
identified an essential protein of unknown function as a key new factor in
modulating LPS synthesis in the model bacterium Escherichia coli. Our results
provide novel insight into how this organism and most likely other
Gram-negative bacteria maintain membrane homeostasis and their intrinsic
resistance to
antibiotics.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.00939-20”,“issue”:“3”,“note”:“publisher:
American Society for
Microbiology”,“page”:“e00939-20”,“source”:“journals.asm.org
(Atypon)”,“title”:“An Essential Membrane Protein Modulates
the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia
coli”,“URL”:“https://journals.asm.org/doi/10.1128/mBio.00939-20”,“volume”:“11”,“author”:[{“family”:“Fivenson”,“given”:“Elayne
M.”},{“family”:“Bernhardt”,“given”:“Thomas
G.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",5,19}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>3<!–[if supportFields]><![endif]–> (Fivenson
& Bernhardt, 2020).<o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.3 Initial Proposed Function of PbgA<o:p></o:p>'<p class=MsoNormal>In
<i style='mso-bidi-font-style:normal'>S. Typhimurium
, cells that use a
two-component regulatory system, PhoPQ, require PbgA to coordinate this process. The PhoPQ
system induces changes to the outer membrane to protect cells from infection by
sensing changes in the environment. One of the changes that occurs is an
increase in the content of the PL, cardiolipin (CL). PbgA
was found to bind to CL in vitro and since the deletion of PbgA
showed no increase in CL content, it led to the assumption that it acts as a
transporter that brings CL from the inner membrane to the outer membrane</span><!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“uTPTGZpN”,“properties”:{“formattedCitation”:“\\super
12\\nosupersub{}”,“plainCitation”:“12”,“noteIndex”:0},“citationItems”:[{“id”:628,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/K232PHWH”],“itemData”:{“id”:628,“type”:“article-journal”,“abstract”:“Gram-negative
bacteria produce an asymmetric outer membrane (OM) that is particularly
impermeant to many antibiotics and characterized by lipopolysaccharide (LPS)
exclusively at the cell surface. LPS biogenesis remains an ideal target for
therapeutic intervention, as disruption could kill bacteria or increase
sensitivity to existing antibiotics. While it has been known that LPS synthesis
is regulated by proteolytic control of LpxC, the enzyme that catalyzes the
first committed step of LPS synthesis, it remains unknown which signals direct
this regulation. New details have been revealed during study of a cryptic
essential inner membrane protein, YejM. Multiple functions have been proposed
over the years for YejM, including a controversial hypothesis that it
transports cardiolipin from the inner membrane to the OM. Strong evidence now
indicates that YejM senses LPS in the periplasm and directs proteolytic
regulation. Here, we discuss the standing literature of YejM and highlight
exciting new insights into cell envelope
maintenance.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.02624-20”,“issue”:“6”,“note”:“publisher:
American Society for Microbiology”,“page”:“e02624-20”,“source”:“journals.asm.org
(Atypon)”,“title”:“Restoring Balance to the Outer Membrane:
YejM’s Role in LPS Regulation”,“title-short”:“Restoring
Balance to the Outer Membrane”,“URL”:“https://journals.asm.org/doi/10.1128/mBio.02624-20”,“volume”:“11”,“author”:[{“family”:“Simpson”,“given”:“Brent
W.”},{“family”:“Douglass”,“given”:“Martin
V.”},{“family”:“Trent”,“given”:“M.
Stephen”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",12,15}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>12<!–[if supportFields]><![endif]–> (Simpson et al., 2020). <o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal>However,
other studies have shown that PbgA may not act as a
cardiolipin transporter as it lacks an outer membrane partner while other
complexes that transport substrates from the inner membrane to the outer
membrane have inner membrane, periplasmic, and outer membrane components.
Additionally, if PbgA were essential for cardiolipin
synthesis, then it would be expected that cardiolipin deficiency would lead to
toxic levels of PbgA, but this does not occur.
Finally, because PbgA is known to have an impact on
outer membrane permeability, but truncations of PbgA
periplasmic domain show outer membrane permeability defects, indicating that
both the inner membrane and periplasmic domain of PbgA
are involved in the same function. Therefore, it is unlikely that PbgA is involved in cardiolipin transport<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“FLnydd47”,“properties”:{“formattedCitation”:“\\super
12\\nosupersub{}”,“plainCitation”:“12”,“noteIndex”:0},“citationItems”:[{“id”:628,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/K232PHWH”],“itemData”:{“id”:628,“type”:“article-journal”,“abstract”:“Gram-negative
bacteria produce an asymmetric outer membrane (OM) that is particularly
impermeant to many antibiotics and characterized by lipopolysaccharide (LPS)
exclusively at the cell surface. LPS biogenesis remains an ideal target for
therapeutic intervention, as disruption could kill bacteria or increase
sensitivity to existing antibiotics. While it has been known that LPS synthesis
is regulated by proteolytic control of LpxC, the enzyme that catalyzes the
first committed step of LPS synthesis, it remains unknown which signals direct
this regulation. New details have been revealed during study of a cryptic
essential inner membrane protein, YejM. Multiple functions have been proposed
over the years for YejM, including a controversial hypothesis that it
transports cardiolipin from the inner membrane to the OM. Strong evidence now
indicates that YejM senses LPS in the periplasm and directs proteolytic
regulation. Here, we discuss the standing literature of YejM and highlight
exciting new insights into cell envelope
maintenance.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.02624-20”,“issue”:“6”,“note”:“publisher:
American Society for
Microbiology”,“page”:“e02624-20”,“source”:“journals.asm.org
(Atypon)”,“title”:“Restoring Balance to the Outer Membrane:
YejM’s Role in LPS Regulation”,“title-short”:“Restoring
Balance to the Outer Membrane”,“URL”:“https://journals.asm.org/doi/10.1128/mBio.02624-20”,“volume”:“11”,“author”:[{“family”:“Simpson”,“given”:“Brent
W.”},{“family”:“Douglass”,“given”:“Martin
V.”},{“family”:“Trent”,“given”:“M.
Stephen”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",12,15}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>12<!–[if supportFields]><![endif]–> (Simpson et al., 2020). <o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.4 Novel Discovery of PbgA Function<o:p></o:p>
'<p class=MsoNormal>A
recent study suggests that PbgA serves a larger but
undefined role in envelope assembly, such as preventing excessive turnover of LpxC and promoting LpxC
accumulation by shielding it from the FtsH-LapB
proteolytic system. They also found that the N-terminal transmembrane of PbgA alone interacts with the LapB
component of the FtsH-LapB proteolytic system to
promote LpxC accumulation<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“OfDNMfny”,“properties”:{“formattedCitation”:“\\super
3\\nosupersub{}”,“plainCitation”:“3”,“noteIndex”:0},“citationItems”:[{“id”:619,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/HWCQ9FUI”],“itemData”:{“id”:619,“type”:“article-journal”,“abstract”:“Gram-negative
bacteria are surrounded by a complex cell envelope that includes two membranes.
The outer membrane prevents many drugs from entering these cells and is thus a
major determinant of their intrinsic antibiotic resistance. This barrier
function is imparted by the asymmetric architecture of the membrane with
lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner
leaflet. The LPS and phospholipid synthesis pathways share an intermediate.
Proper membrane biogenesis therefore requires that the flux through each
pathway be balanced. In Escherichia coli, a major control point in establishing
this balance is the committed step of LPS synthesis mediated by LpxC. Levels of
this enzyme are controlled through its degradation by the inner membrane
protease FtsH and its presumed adapter protein LapB (YciM). How turnover of
LpxC is controlled has remained unclear for many years. Here, we demonstrate
that the essential protein of unknown function YejM (PbgA) participates in this
regulatory pathway. Suppressors of YejM essentiality were identified in lpxC
and lapB, and LpxC overproduction was shown to be sufficient to allow survival
of ΔyejM mutants. Furthermore, the stability of LpxC was shown to be
reduced in cells lacking YejM, and genetic and physical interactions between
LapB and YejM were detected. Taken together, our results are consistent with a
model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate
LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane
is a major determinant of the intrinsic antibiotic resistance of Gram-negative
bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid, and
the synthesis of these lipid species must be balanced for the membrane to
maintain its barrier function in blocking drug entry. In this study, we
identified an essential protein of unknown function as a key new factor in
modulating LPS synthesis in the model bacterium Escherichia coli. Our results
provide novel insight into how this organism and most likely other
Gram-negative bacteria maintain membrane homeostasis and their intrinsic
resistance to
antibiotics.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.00939-20”,“issue”:“3”,“note”:“publisher:
American Society for
Microbiology”,“page”:“e00939-20”,“source”:“journals.asm.org
(Atypon)”,“title”:“An Essential Membrane Protein Modulates
the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia
coli”,“URL”:“https://journals.asm.org/doi/10.1128/mBio.00939-20”,“volume”:“11”,“author”:[{“family”:“Fivenson”,“given”:“Elayne
M.”},{“family”:“Bernhardt”,“given”:“Thomas
G.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",5,19}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>3<!–[if supportFields]><![endif]–> (Fivenson
& Bernhardt, 2020).<o:p></o:p><p class=MsoNormal> <o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>Polymyxin Antibiotics and Antibiotic
Resistance:<o:p></o:p>'<p class=MsoNormal><o:p> </o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.1. Polymyxin Antibiotics<o:p></o:p>
'<p class=MsoNormal>Polymyxins
are an important class of antibiotics used in the treatment of systemic
infections caused by multidrug-resistant gram-negative bacteria such as
pseudomonas aeruginosa<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“wRfcvQq5”,“properties”:{“formattedCitation”:“\\super
13\\nosupersub{}”,“plainCitation”:“13”,“noteIndex”:0},“citationItems”:[{“id”:608,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG”],“itemData”:{“id”:608,“type”:“chapter”,“abstract”:“Polymyxins
are a class of medications used in the management and treatment of systemic
infections caused by susceptible strains of multidrug-resistant organisms such
as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This
activity reviews the indications, action, and contraindications for polymyxin
as a valuable agent in the treatment of multidrug-resistant infections. This
activity will highlight the mechanism of action, adverse event profile, and
other key factors pertinent for members of the interprofessional team in the
treatment of patients with polymyxins who are infected by susceptible strains
of gram-negative pathogens resistant most of the other antibiotic
classes.”,“call-number”:“NBK557540”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island
(FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID:
32491472”,“publisher”:“StatPearls
Publishing”,“publisher-place”:“Treasure Island
(FL)”,“source”:“PubMed”,“title”:“Polymyxin”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK557540/”,“author”:[{“family”:“Shatri”,“given”:“Genti”},{“family”:“Tadi”,“given”:“Prasanna”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>13<!–[if supportFields]><![endif]–> (Shatri
& Tadi, 2022). Currently, these antibiotics are
used as a last line of treatment against such infections<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“n7wlnoFI”,“properties”:{“formattedCitation”:“\\super
13\\nosupersub{}”,“plainCitation”:“13”,“noteIndex”:0},“citationItems”:[{“id”:608,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG”],“itemData”:{“id”:608,“type”:“chapter”,“abstract”:“Polymyxins
are a class of medications used in the management and treatment of systemic
infections caused by susceptible strains of multidrug-resistant organisms such
as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This
activity reviews the indications, action, and contraindications for polymyxin as
a valuable agent in the treatment of multidrug-resistant infections. This
activity will highlight the mechanism of action, adverse event profile, and
other key factors pertinent for members of the interprofessional team in the
treatment of patients with polymyxins who are infected by susceptible strains
of gram-negative pathogens resistant most of the other antibiotic
classes.”,“call-number”:“NBK557540”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island
(FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID:
32491472”,“publisher”:“StatPearls
Publishing”,“publisher-place”:“Treasure Island
(FL)”,“source”:“PubMed”,“title”:“Polymyxin”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK557540/”,“author”:[{“family”:“Shatri”,“given”:“Genti”},{“family”:“Tadi”,“given”:“Prasanna”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>13<!–[if supportFields]><![endif]–> (Shatri
& Tadi, 2022). The main drugs in clinical use
within this antibiotic class are Polymyxin B and Polymyxin E (also called
colistin), which target infections of the urinary tract, meninges, and
bloodstream<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION
{“citationID”:“tYAD01ia”,“properties”:{“formattedCitation”:“\\super
13\\nosupersub{}”,“plainCitation”:“13”,“noteIndex”:0},“citationItems”:[{“id”:608,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG”],“itemData”:{“id”:608,“type”:“chapter”,“abstract”:“Polymyxins
are a class of medications used in the management and treatment of systemic
infections caused by susceptible strains of multidrug-resistant organisms such
as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This
activity reviews the indications, action, and contraindications for polymyxin
as a valuable agent in the treatment of multidrug-resistant infections. This
activity will highlight the mechanism of action, adverse event profile, and
other key factors pertinent for members of the interprofessional team in the
treatment of patients with polymyxins who are infected by susceptible strains
of gram-negative pathogens resistant most of the other antibiotic
classes.”,“call-number”:“NBK557540”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island
(FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID:
32491472”,“publisher”:“StatPearls Publishing”,“publisher-place”:“Treasure
Island
(FL)”,“source”:“PubMed”,“title”:“Polymyxin”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK557540/”,“author”:[{“family”:“Shatri”,“given”:“Genti”},{“family”:“Tadi”,“given”:“Prasanna”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>13<!–[if supportFields]><![endif]–> (Shatri
& Tadi, 2022). <o:p></o:p><p class=MsoNormal><o:p> </o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.2. Mechanism of Action of Colistin<o:p></o:p>'<p class=MsoNormal>Polymyxins
target the lipid A core of LPS<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“7ZVsLxVx”,“properties”:{“formattedCitation”:“\\super
14\\nosupersub{}”,“plainCitation”:“14”,“noteIndex”:0},“citationItems”:[{“id”:612,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/S5FNUZAL”],“itemData”:{“id”:612,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
(LPS) resides in the outer membrane of Gram-negative bacteria where it is
responsible for barrier function1,2. LPS can cause death as a result of septic
shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite
the clinical importance of polymyxins and the emergence of multidrug resistant
strains5, our understanding of the bacterial factors that regulate LPS
biogenesis is incomplete. Here we characterize the inner membrane protein PbgA
and report that its depletion attenuates the virulence of Escherichia coli by
reducing levels of LPS and outer membrane integrity. In contrast to previous
claims that PbgA functions as a cardiolipin transporter6–9, our structural
analyses and physiological studies identify a lipid A-binding motif along the
periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides
selectively bind to LPS in vitro and inhibit the growth of diverse
Gram-negative bacteria, including polymyxin-resistant strains. Proteomic,
genetic and pharmacological experiments uncover a model in which direct
periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by
regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12.
In summary, we find that PbgA has an unexpected but essential role in the
regulation of LPS biogenesis, presents a new structural basis for the selective
recognition of lipids, and provides opportunities for future antibiotic
discovery.”,“container-title”:“Nature”,“DOI”:“10.1038/s41586-020-2597-x”,“ISSN”:“1476-4687”,“issue”:“7821”,“language”:“en”,“license”:“2020
The Author(s), under exclusive licence to Springer Nature
Limited”,“note”:“number: 7821\npublisher: Nature Publishing
Group”,“page”:“479-483”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of the essential inner membrane lipopolysaccharide–PbgA
complex”,“URL”:“http://www.nature.com/articles/s41586-020-2597-x”,“volume”:“584”,“author”:[{“family”:“Clairfeuille”,“given”:“Thomas”},{“family”:“Buchholz”,“given”:“Kerry
R.”},{“family”:“Li”,“given”:“Qingling”},{“family”:“Verschueren”,“given”:“Erik”},{“family”:“Liu”,“given”:“Peter”},{“family”:“Sangaraju”,“given”:“Dewakar”},{“family”:“Park”,“given”:“Summer”},{“family”:“Noland”,“given”:“Cameron
L.”},{“family”:“Storek”,“given”:“Kelly
M.”},{“family”:“Nickerson”,“given”:“Nicholas
N.”},{“family”:“Martin”,“given”:“Lynn”},{“family”:“Dela
Vega”,“given”:“Trisha”},{“family”:“Miu”,“given”:“Anh”},{“family”:“Reeder”,“given”:“Janina”},{“family”:“Ruiz-Gonzalez”,“given”:“Maria”},{“family”:“Swem”,“given”:“Danielle”},{“family”:“Han”,“given”:“Guanghui”},{“family”:“DePonte”,“given”:“Daniel
P.”},{“family”:“Hunter”,“given”:“Mark
S.”},{“family”:“Gati”,“given”:“Cornelius”},{“family”:“Shahidi-Latham”,“given”:“Sheerin”},{“family”:“Xu”,“given”:“Min”},{“family”:“Skelton”,“given”:“Nicholas”},{“family”:“Sellers”,“given”:“Benjamin
D.”},{“family”:“Skippington”,“given”:“Elizabeth”},{“family”:“Sandoval”,“given”:“Wendy”},{“family”:“Hanan”,“given”:“Emily
J.”},{“family”:“Payandeh”,“given”:“Jian”},{“family”:“Rutherford”,“given”:“Steven
T.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>14<!–[if supportFields]><![endif]–> (Clairfeuille
et al., 2020). These antibiotics destabilize the PLs and LPS present in the
outer membrane of gram-negative bacteria<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION {“citationID”:“c9oHqDO2”,“properties”:{“formattedCitation”:“\\super
13\\nosupersub{}”,“plainCitation”:“13”,“noteIndex”:0},“citationItems”:[{“id”:608,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG”],“itemData”:{“id”:608,“type”:“chapter”,“abstract”:“Polymyxins
are a class of medications used in the management and treatment of systemic
infections caused by susceptible strains of multidrug-resistant organisms such
as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This activity
reviews the indications, action, and contraindications for polymyxin as a
valuable agent in the treatment of multidrug-resistant infections. This
activity will highlight the mechanism of action, adverse event profile, and
other key factors pertinent for members of the interprofessional team in the
treatment of patients with polymyxins who are infected by susceptible strains
of gram-negative pathogens resistant most of the other antibiotic
classes.”,“call-number”:“NBK557540”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island
(FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID:
32491472”,“publisher”:“StatPearls Publishing”,“publisher-place”:“Treasure
Island
(FL)”,“source”:“PubMed”,“title”:“Polymyxin”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK557540/”,“author”:[{“family”:“Shatri”,“given”:“Genti”},{“family”:“Tadi”,“given”:“Prasanna”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>13<!–[if supportFields]><![endif]–> (Shatri
& Tadi, 2022). Since polymyxins are positively
charged, they electrostatically interact with the phosphate groups on both of
the negatively charged phosphorylated sugars that make up lipid A<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“Htyh6yVV”,“properties”:{“formattedCitation”:“\\super
13\\nosupersub{}”,“plainCitation”:“13”,“noteIndex”:0},“citationItems”:[{“id”:608,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG”],“itemData”:{“id”:608,“type”:“chapter”,“abstract”:“Polymyxins
are a class of medications used in the management and treatment of systemic
infections caused by susceptible strains of multidrug-resistant organisms such
as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This
activity reviews the indications, action, and contraindications for polymyxin
as a valuable agent in the treatment of multidrug-resistant infections. This
activity will highlight the mechanism of action, adverse event profile, and
other key factors pertinent for members of the interprofessional team in the
treatment of patients with polymyxins who are infected by susceptible strains
of gram-negative pathogens resistant most of the other antibiotic
classes.”,“call-number”:“NBK557540”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island (FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID: 32491472”,“publisher”:“StatPearls
Publishing”,“publisher-place”:“Treasure Island
(FL)”,“source”:“PubMed”,“title”:“Polymyxin”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK557540/”,“author”:[{“family”:“Shatri”,“given”:“Genti”},{“family”:“Tadi”,“given”:“Prasanna”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>13<!–[if supportFields]><![endif]–> (Shatri
& Tadi, 2022). This causes the divalent cations
(such as calcium and magnesium) from the phosphate groups within the membrane
lipids to become displaced, creating increased permeability<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“dd4opF7M”,“properties”:{“formattedCitation”:“\\super
13\\nosupersub{}”,“plainCitation”:“13”,“noteIndex”:0},“citationItems”:[{“id”:608,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG”],“itemData”:{“id”:608,“type”:“chapter”,“abstract”:“Polymyxins
are a class of medications used in the management and treatment of systemic
infections caused by susceptible strains of multidrug-resistant organisms such
as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This activity
reviews the indications, action, and contraindications for polymyxin as a
valuable agent in the treatment of multidrug-resistant infections. This
activity will highlight the mechanism of action, adverse event profile, and
other key factors pertinent for members of the interprofessional team in the
treatment of patients with polymyxins who are infected by susceptible strains
of gram-negative pathogens resistant most of the other antibiotic
classes.”,“call-number”:“NBK557540”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island
(FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID:
32491472”,“publisher”:“StatPearls Publishing”,“publisher-place”:“Treasure
Island
(FL)”,“source”:“PubMed”,“title”:“Polymyxin”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK557540/”,“author”:[{“family”:“Shatri”,“given”:“Genti”},{“family”:“Tadi”,“given”:“Prasanna”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>13<!–[if supportFields]><![endif]–> (Shatri
& Tadi, 2022). This leads to the outer membrane
becoming disrupted, allowing small molecules and other intracellular contents
to leak out of the cell and cause bacterial cell death<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“KQVXUWc2”,“properties”:{“formattedCitation”:“\\super
13\\nosupersub{}”,“plainCitation”:“13”,“noteIndex”:0},“citationItems”:[{“id”:608,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG”],“itemData”:{“id”:608,“type”:“chapter”,“abstract”:“Polymyxins
are a class of medications used in the management and treatment of systemic
infections caused by susceptible strains of multidrug-resistant organisms such
as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This
activity reviews the indications, action, and contraindications for polymyxin
as a valuable agent in the treatment of multidrug-resistant infections. This
activity will highlight the mechanism of action, adverse event profile, and
other key factors pertinent for members of the interprofessional team in the
treatment of patients with polymyxins who are infected by susceptible strains of
gram-negative pathogens resistant most of the other antibiotic
classes.”,“call-number”:“NBK557540”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island (FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID: 32491472”,“publisher”:“StatPearls
Publishing”,“publisher-place”:“Treasure Island
(FL)”,“source”:“PubMed”,“title”:“Polymyxin”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK557540/”,“author”:[{“family”:“Shatri”,“given”:“Genti”},{“family”:“Tadi”,“given”:“Prasanna”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>13<!–[if supportFields]><![endif]–> (Shatri
& Tadi, 2022). <o:p></o:p><p class=MsoNormal>In
addition, polymyxins can neutralize the endotoxin effect of pathogens<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“jz6XGLzg”,“properties”:{“formattedCitation”:“\\super
13\\nosupersub{}”,“plainCitation”:“13”,“noteIndex”:0},“citationItems”:[{“id”:608,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG”],“itemData”:{“id”:608,“type”:“chapter”,“abstract”:“Polymyxins
are a class of medications used in the management and treatment of systemic
infections caused by susceptible strains of multidrug-resistant organisms such
as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This activity
reviews the indications, action, and contraindications for polymyxin as a
valuable agent in the treatment of multidrug-resistant infections. This
activity will highlight the mechanism of action, adverse event profile, and
other key factors pertinent for members of the interprofessional team in the
treatment of patients with polymyxins who are infected by susceptible strains
of gram-negative pathogens resistant most of the other antibiotic
classes.”,“call-number”:“NBK557540”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island
(FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID:
32491472”,“publisher”:“StatPearls
Publishing”,“publisher-place”:“Treasure Island
(FL)”,“source”:“PubMed”,“title”:“Polymyxin”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK557540/”,“author”:[{“family”:“Shatri”,“given”:“Genti”},{“family”:“Tadi”,“given”:“Prasanna”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>13<!–[if supportFields]><![endif]–> (Shatri
& Tadi, 2022). Since the endotoxic part of
gram-negative bacteria corresponds to the lipid A core, polymyxins can bind to
the LPS that was released as a result of cellular death<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“Clnnlrv8”,“properties”:{“formattedCitation”:“\\super
13\\nosupersub{}”,“plainCitation”:“13”,“noteIndex”:0},“citationItems”:[{“id”:608,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG”],“itemData”:{“id”:608,“type”:“chapter”,“abstract”:“Polymyxins
are a class of medications used in the management and treatment of systemic
infections caused by susceptible strains of multidrug-resistant organisms such
as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This
activity reviews the indications, action, and contraindications for polymyxin
as a valuable agent in the treatment of multidrug-resistant infections. This
activity will highlight the mechanism of action, adverse event profile, and
other key factors pertinent for members of the interprofessional team in the
treatment of patients with polymyxins who are infected by susceptible strains
of gram-negative pathogens resistant most of the other antibiotic
classes.”,“call-number”:“NBK557540”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island (FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID:
32491472”,“publisher”:“StatPearls
Publishing”,“publisher-place”:“Treasure Island
(FL)”,“source”:“PubMed”,“title”:“Polymyxin”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK557540/”,“author”:[{“family”:“Shatri”,“given”:“Genti”},{“family”:“Tadi”,“given”:“Prasanna”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>13<!–[if supportFields]><![endif]–> (Shatri
& Tadi, 2022). This results in the neutralization
of the endotoxin, preventing its effects in circulation<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“PhtPbk2K”,“properties”:{“formattedCitation”:“\\super
13\\nosupersub{}”,“plainCitation”:“13”,“noteIndex”:0},“citationItems”:[{“id”:608,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG”],“itemData”:{“id”:608,“type”:“chapter”,“abstract”:“Polymyxins
are a class of medications used in the management and treatment of systemic
infections caused by susceptible strains of multidrug-resistant organisms such
as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This
activity reviews the indications, action, and contraindications for polymyxin
as a valuable agent in the treatment of multidrug-resistant infections. This
activity will highlight the mechanism of action, adverse event profile, and
other key factors pertinent for members of the interprofessional team in the
treatment of patients with polymyxins who are infected by susceptible strains
of gram-negative pathogens resistant most of the other antibiotic
classes.”,“call-number”:“NBK557540”,“container-title”:“StatPearls”,“event-place”:“Treasure
Island
(FL)”,“language”:“eng”,“license”:“Copyright
© 2022, StatPearls Publishing LLC.”,“note”:“PMID:
32491472”,“publisher”:“StatPearls
Publishing”,“publisher-place”:“Treasure Island
(FL)”,“source”:“PubMed”,“title”:“Polymyxin”,“URL”:“http://www.ncbi.nlm.nih.gov/books/NBK557540/”,“author”:[{“family”:“Shatri”,“given”:“Genti”},{“family”:“Tadi”,“given”:“Prasanna”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2022"}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>13<!–[if supportFields]><![endif]–> (Shatri
& Tadi, 2022).<o:p></o:p><p class=MsoNormal><!–[if gte vml 1]><v:shape id=“image3.png” o:spid=“_x0000_i1026”
type=“#_x0000_t75” style='width:457pt;height:217.5pt;visibility:visible;
mso-wrap-style:square'><v:imagedata src=“Wiki%20Draft%20(1)_files/image017.png” o:title=“”
cropbottom=“1110f” cropleft=“630f” cropright=“528f”/></v:shape><![endif]–><![if !vml]><img border=0 width=609 height=290
src=“Wiki%20Draft%20(1)_files/image018.gif” v:shapes=“image3.png”><![endif]><o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>Figure X:
' Colistin electrostatically
interacts with the lipid A core of LPS, creating a disruption of the membrane
and allowing small molecules to leak out of the cell.<o:p></o:p><p class=MsoNormal><o:p> </o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>X.3. Antibiotic Resistance<o:p></o:p>'<p class=MsoNormal>Polymyxins
are an extremely important and clinically relevant class of drugs since they
are the last line of defence against gram-negative
bacteria that are resistant to all other antibiotics<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“1nRHZKva”,“properties”:{“formattedCitation”:“\\super
14\\nosupersub{}”,“plainCitation”:“14”,“noteIndex”:0},“citationItems”:[{“id”:612,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/S5FNUZAL”],“itemData”:{“id”:612,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
(LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible
for barrier function1,2. LPS can cause death as a result of septic shock, and
its lipid A core is the target of polymyxin antibiotics3,4. Despite the
clinical importance of polymyxins and the emergence of multidrug resistant
strains5, our understanding of the bacterial factors that regulate LPS
biogenesis is incomplete. Here we characterize the inner membrane protein PbgA
and report that its depletion attenuates the virulence of Escherichia coli by
reducing levels of LPS and outer membrane integrity. In contrast to previous
claims that PbgA functions as a cardiolipin transporter6–9, our structural
analyses and physiological studies identify a lipid A-binding motif along the
periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides
selectively bind to LPS in vitro and inhibit the growth of diverse
Gram-negative bacteria, including polymyxin-resistant strains. Proteomic,
genetic and pharmacological experiments uncover a model in which direct
periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by
regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12.
In summary, we find that PbgA has an unexpected but essential role in the
regulation of LPS biogenesis, presents a new structural basis for the selective
recognition of lipids, and provides opportunities for future antibiotic
discovery.”,“container-title”:“Nature”,“DOI”:“10.1038/s41586-020-2597-x”,“ISSN”:“1476-4687”,“issue”:“7821”,“language”:“en”,“license”:“2020
The Author(s), under exclusive licence to Springer Nature
Limited”,“note”:“number: 7821\npublisher: Nature Publishing
Group”,“page”:“479-483”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of the essential inner membrane lipopolysaccharide–PbgA
complex”,“URL”:“http://www.nature.com/articles/s41586-020-2597-x”,“volume”:“584”,“author”:[{“family”:“Clairfeuille”,“given”:“Thomas”},{“family”:“Buchholz”,“given”:“Kerry
R.”},{“family”:“Li”,“given”:“Qingling”},{“family”:“Verschueren”,“given”:“Erik”},{“family”:“Liu”,“given”:“Peter”},{“family”:“Sangaraju”,“given”:“Dewakar”},{“family”:“Park”,“given”:“Summer”},{“family”:“Noland”,“given”:“Cameron
L.”},{“family”:“Storek”,“given”:“Kelly
M.”},{“family”:“Nickerson”,“given”:“Nicholas
N.”},{“family”:“Martin”,“given”:“Lynn”},{“family”:“Dela
Vega”,“given”:“Trisha”},{“family”:“Miu”,“given”:“Anh”},{“family”:“Reeder”,“given”:“Janina”},{“family”:“Ruiz-Gonzalez”,“given”:“Maria”},{“family”:“Swem”,“given”:“Danielle”},{“family”:“Han”,“given”:“Guanghui”},{“family”:“DePonte”,“given”:“Daniel
P.”},{“family”:“Hunter”,“given”:“Mark
S.”},{“family”:“Gati”,“given”:“Cornelius”},{“family”:“Shahidi-Latham”,“given”:“Sheerin”},{“family”:“Xu”,“given”:“Min”},{“family”:“Skelton”,“given”:“Nicholas”},{“family”:“Sellers”,“given”:“Benjamin
D.”},{“family”:“Skippington”,“given”:“Elizabeth”},{“family”:“Sandoval”,“given”:“Wendy”},{“family”:“Hanan”,“given”:“Emily
J.”},{“family”:“Payandeh”,“given”:“Jian”},{“family”:“Rutherford”,“given”:“Steven
T.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>14<!–[if supportFields]><![endif]–> (Clairfeuille
et al., 2020). Unfortunately, there is an emergence of bacteria that are also
resistant to polymyxins<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“d0lBYWG3”,“properties”:{“formattedCitation”:“\\super
14\\nosupersub{}”,“plainCitation”:“14”,“noteIndex”:0},“citationItems”:[{“id”:612,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/S5FNUZAL”],“itemData”:{“id”:612,“type”:“article-journal”,“abstract”:“Lipopolysaccharide
(LPS) resides in the outer membrane of Gram-negative bacteria where it is
responsible for barrier function1,2. LPS can cause death as a result of septic
shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite
the clinical importance of polymyxins and the emergence of multidrug resistant
strains5, our understanding of the bacterial factors that regulate LPS
biogenesis is incomplete. Here we characterize the inner membrane protein PbgA
and report that its depletion attenuates the virulence of Escherichia coli by
reducing levels of LPS and outer membrane integrity. In contrast to previous
claims that PbgA functions as a cardiolipin transporter6–9, our structural
analyses and physiological studies identify a lipid A-binding motif along the
periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides
selectively bind to LPS in vitro and inhibit the growth of diverse
Gram-negative bacteria, including polymyxin-resistant strains. Proteomic,
genetic and pharmacological experiments uncover a model in which direct periplasmic
sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating
the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12. In summary,
we find that PbgA has an unexpected but essential role in the regulation of LPS
biogenesis, presents a new structural basis for the selective recognition of
lipids, and provides opportunities for future antibiotic
discovery.”,“container-title”:“Nature”,“DOI”:“10.1038/s41586-020-2597-x”,“ISSN”:“1476-4687”,“issue”:“7821”,“language”:“en”,“license”:“2020
The Author(s), under exclusive licence to Springer Nature
Limited”,“note”:“number: 7821\npublisher: Nature Publishing
Group”,“page”:“479-483”,“source”:“www-nature-com.libaccess.lib.mcmaster.ca”,“title”:“Structure
of the essential inner membrane lipopolysaccharide–PbgA
complex”,“URL”:“http://www.nature.com/articles/s41586-020-2597-x”,“volume”:“584”,“author”:[{“family”:“Clairfeuille”,“given”:“Thomas”},{“family”:“Buchholz”,“given”:“Kerry
R.”},{“family”:“Li”,“given”:“Qingling”},{“family”:“Verschueren”,“given”:“Erik”},{“family”:“Liu”,“given”:“Peter”},{“family”:“Sangaraju”,“given”:“Dewakar”},{“family”:“Park”,“given”:“Summer”},{“family”:“Noland”,“given”:“Cameron
L.”},{“family”:“Storek”,“given”:“Kelly
M.”},{“family”:“Nickerson”,“given”:“Nicholas
N.”},{“family”:“Martin”,“given”:“Lynn”},{“family”:“Dela
Vega”,“given”:“Trisha”},{“family”:“Miu”,“given”:“Anh”},{“family”:“Reeder”,“given”:“Janina”},{“family”:“Ruiz-Gonzalez”,“given”:“Maria”},{“family”:“Swem”,“given”:“Danielle”},{“family”:“Han”,“given”:“Guanghui”},{“family”:“DePonte”,“given”:“Daniel
P.”},{“family”:“Hunter”,“given”:“Mark
S.”},{“family”:“Gati”,“given”:“Cornelius”},{“family”:“Shahidi-Latham”,“given”:“Sheerin”},{“family”:“Xu”,“given”:“Min”},{“family”:“Skelton”,“given”:“Nicholas”},{“family”:“Sellers”,“given”:“Benjamin
D.”},{“family”:“Skippington”,“given”:“Elizabeth”},{“family”:“Sandoval”,“given”:“Wendy”},{“family”:“Hanan”,“given”:“Emily
J.”},{“family”:“Payandeh”,“given”:“Jian”},{“family”:“Rutherford”,“given”:“Steven
T.”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2020",8}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>14<!–[if supportFields]><![endif]–> (Clairfeuille
et al., 2020). One bacterial resistance mechanism that has been discovered is
due to the expression of EptA, a protein part of the
same family as PbgA<!–[if supportFields]>
ADDIN ZOTERO_ITEM CSL_CITATION
{“citationID”:“ZB2uPOlP”,“properties”:{“formattedCitation”:“\\super
15\\nosupersub{}”,“plainCitation”:“15”,“noteIndex”:0},“citationItems”:[{“id”:610,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/4G5T5MW8”],“itemData”:{“id”:610,“type”:“article-journal”,“abstract”:“Polymyxins,
a family of cationic antimicrobial cyclic peptides, act as a last line of
defense against severe infections by Gram-negative pathogens with carbapenem
resistance. In addition to the intrinsic resistance to polymyxin E (colistin)
conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance
gene mcr-1 has been disseminated globally since the first discovery in Southern
China, in late 2015. However, the molecular mechanisms for both intrinsic and
transferable resistance to colistin remain largely unknown. Here, we aim to
address this gap in the knowledge of these proteins. Structural and functional
analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity
that is required for the entry of the lipid substrate, phosphatidylethanolamine
(PE). The in vitro and in vivo data together have allowed us to visualize the
similarities in catalytic activity shared by EptA and MCR-1 and -2. The
expression of either EptA or MCR-1 or -2 is shown to remodel the surface of
enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella
pneumoniae, etc.), rendering them resistant to colistin. The parallels in the
PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a
comprehensive understanding of both intrinsic and transferable colistin
resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two
domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase)
are not functionally exchangeable. Taken together, the results represent a
common mechanism for intrinsic and transferable PEA resistance to polymyxin, a
last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA
and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to
colistin, a final resort against carbapenem-resistant pathogens. Structural and
functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid
substrate-recognizing cavities, which explains intrinsic and transferable
colistin resistance in gut bacteria. A similar mechanism is proposed for the
catalytic activities of EptA and MCR-1 and -2. Together, they constitute a
common mechanism for intrinsic and transferable polymyxin
resistance.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.02317-17”,“issue”:“2”,“note”:“publisher:
American Society for
Microbiology”,“page”:“e02317-17”,“source”:“journals.asm.org
(Atypon)”,“title”:“An Evolutionarily Conserved Mechanism
for Intrinsic and Transferable Polymyxin Resistance”,“URL”:“https://journals.asm.org/doi/full/10.1128/mBio.02317-17”,“volume”:“9”,“author”:[{“family”:“Xu”,“given”:“Yongchang”},{“family”:“Wei”,“given”:“Wenhui”},{“family”:“Lei”,“given”:“Sheng”},{“family”:“Lin”,“given”:“Jingxia”},{“family”:“Srinivas”,“given”:“Swaminath”},{“family”:“Feng”,“given”:“Youjun”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2018",4,10}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>15<!–[if supportFields]><![endif]–> (Xu et al., 2018). This protein has
been shown to remodel the surface of the bacteria, making it resistant to
colistin<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION
{“citationID”:“W7GaEfgH”,“properties”:{“formattedCitation”:“\\super
15\\nosupersub{}”,“plainCitation”:“15”,“noteIndex”:0},“citationItems”:[{“id”:610,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/4G5T5MW8”],“itemData”:{“id”:610,“type”:“article-journal”,“abstract”:“Polymyxins,
a family of cationic antimicrobial cyclic peptides, act as a last line of
defense against severe infections by Gram-negative pathogens with carbapenem
resistance. In addition to the intrinsic resistance to polymyxin E (colistin)
conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance
gene mcr-1 has been disseminated globally since the first discovery in Southern
China, in late 2015. However, the molecular mechanisms for both intrinsic and
transferable resistance to colistin remain largely unknown. Here, we aim to
address this gap in the knowledge of these proteins. Structural and functional
analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity
that is required for the entry of the lipid substrate, phosphatidylethanolamine
(PE). The in vitro and in vivo data together have allowed us to visualize the
similarities in catalytic activity shared by EptA and MCR-1 and -2. The
expression of either EptA or MCR-1 or -2 is shown to remodel the surface of
enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella
pneumoniae, etc.), rendering them resistant to colistin. The parallels in the
PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a
comprehensive understanding of both intrinsic and transferable colistin
resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two
domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase)
are not functionally exchangeable. Taken together, the results represent a
common mechanism for intrinsic and transferable PEA resistance to polymyxin, a
last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA
and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to
colistin, a final resort against carbapenem-resistant pathogens. Structural and
functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid
substrate-recognizing cavities, which explains intrinsic and transferable colistin
resistance in gut bacteria. A similar mechanism is proposed for the catalytic
activities of EptA and MCR-1 and -2. Together, they constitute a common
mechanism for intrinsic and transferable polymyxin
resistance.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.02317-17”,“issue”:“2”,“note”:“publisher:
American Society for
Microbiology”,“page”:“e02317-17”,“source”:“journals.asm.org
(Atypon)”,“title”:“An Evolutionarily Conserved Mechanism
for Intrinsic and Transferable Polymyxin
Resistance”,“URL”:“https://journals.asm.org/doi/full/10.1128/mBio.02317-17”,“volume”:“9”,“author”:[{“family”:“Xu”,“given”:“Yongchang”},{“family”:“Wei”,“given”:“Wenhui”},{“family”:“Lei”,“given”:“Sheng”},{“family”:“Lin”,“given”:“Jingxia”},{“family”:“Srinivas”,“given”:“Swaminath”},{“family”:“Feng”,“given”:“Youjun”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2018",4,10}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>15<!–[if supportFields]><![endif]–> (Xu et al., 2018). EptA does this by modifying the phosphate groups on both of
the phosphorylated sugars on lipid A; thereby, reducing its overall negative
charge<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION
{“citationID”:“wH3osBJS”,“properties”:{“formattedCitation”:“\\super
15\\nosupersub{}”,“plainCitation”:“15”,“noteIndex”:0},“citationItems”:[{“id”:610,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/4G5T5MW8”],“itemData”:{“id”:610,“type”:“article-journal”,“abstract”:“Polymyxins,
a family of cationic antimicrobial cyclic peptides, act as a last line of
defense against severe infections by Gram-negative pathogens with carbapenem
resistance. In addition to the intrinsic resistance to polymyxin E (colistin)
conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance
gene mcr-1 has been disseminated globally since the first discovery in Southern
China, in late 2015. However, the molecular mechanisms for both intrinsic and
transferable resistance to colistin remain largely unknown. Here, we aim to
address this gap in the knowledge of these proteins. Structural and functional
analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity that
is required for the entry of the lipid substrate, phosphatidylethanolamine
(PE). The in vitro and in vivo data together have allowed us to visualize the
similarities in catalytic activity shared by EptA and MCR-1 and -2. The
expression of either EptA or MCR-1 or -2 is shown to remodel the surface of
enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella
pneumoniae, etc.), rendering them resistant to colistin. The parallels in the
PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a
comprehensive understanding of both intrinsic and transferable colistin
resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two
domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase)
are not functionally exchangeable. Taken together, the results represent a
common mechanism for intrinsic and transferable PEA resistance to polymyxin, a
last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA
and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to
colistin, a final resort against carbapenem-resistant pathogens. Structural and
functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid
substrate-recognizing cavities, which explains intrinsic and transferable
colistin resistance in gut bacteria. A similar mechanism is proposed for the
catalytic activities of EptA and MCR-1 and -2. Together, they constitute a
common mechanism for intrinsic and transferable polymyxin
resistance.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.02317-17”,“issue”:“2”,“note”:“publisher:
American Society for
Microbiology”,“page”:“e02317-17”,“source”:“journals.asm.org
(Atypon)”,“title”:“An Evolutionarily Conserved Mechanism
for Intrinsic and Transferable Polymyxin Resistance”,“URL”:“https://journals.asm.org/doi/full/10.1128/mBio.02317-17”,“volume”:“9”,“author”:[{“family”:“Xu”,“given”:“Yongchang”},{“family”:“Wei”,“given”:“Wenhui”},{“family”:“Lei”,“given”:“Sheng”},{“family”:“Lin”,“given”:“Jingxia”},{“family”:“Srinivas”,“given”:“Swaminath”},{“family”:“Feng”,“given”:“Youjun”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2018",4,10}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>15<!–[if supportFields]><![endif]–> (Xu et al., 2018). This makes the
bacteria resistant to polymyxins because they can no longer have the previously
mentioned electrostatic interactions and thus cannot bind to the modified lipid
A core<!–[if supportFields]> ADDIN
ZOTERO_ITEM CSL_CITATION
{“citationID”:“Ev7M9sq2”,“properties”:{“formattedCitation”:“\\super
15\\nosupersub{}”,“plainCitation”:“15”,“noteIndex”:0},“citationItems”:[{“id”:610,“uris”:[“http://zotero.org/users/local/DWdd4k1w/items/4G5T5MW8”],“itemData”:{“id”:610,“type”:“article-journal”,“abstract”:“Polymyxins,
a family of cationic antimicrobial cyclic peptides, act as a last line of
defense against severe infections by Gram-negative pathogens with carbapenem
resistance. In addition to the intrinsic resistance to polymyxin E (colistin)
conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance
gene mcr-1 has been disseminated globally since the first discovery in Southern
China, in late 2015. However, the molecular mechanisms for both intrinsic and
transferable resistance to colistin remain largely unknown. Here, we aim to
address this gap in the knowledge of these proteins. Structural and functional
analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity
that is required for the entry of the lipid substrate, phosphatidylethanolamine
(PE). The in vitro and in vivo data together have allowed us to visualize the
similarities in catalytic activity shared by EptA and MCR-1 and -2. The
expression of either EptA or MCR-1 or -2 is shown to remodel the surface of
enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella
pneumoniae, etc.), rendering them resistant to colistin. The parallels in the
PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a
comprehensive understanding of both intrinsic and transferable colistin
resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two
domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase)
are not functionally exchangeable. Taken together, the results represent a
common mechanism for intrinsic and transferable PEA resistance to polymyxin, a
last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA
and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to
colistin, a final resort against carbapenem-resistant pathogens. Structural and
functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid
substrate-recognizing cavities, which explains intrinsic and transferable
colistin resistance in gut bacteria. A similar mechanism is proposed for the
catalytic activities of EptA and MCR-1 and -2. Together, they constitute a
common mechanism for intrinsic and transferable polymyxin
resistance.”,“container-title”:“mBio”,“DOI”:“10.1128/mBio.02317-17”,“issue”:“2”,“note”:“publisher:
American Society for
Microbiology”,“page”:“e02317-17”,“source”:“journals.asm.org
(Atypon)”,“title”:“An Evolutionarily Conserved Mechanism
for Intrinsic and Transferable Polymyxin Resistance”,“URL”:“https://journals.asm.org/doi/full/10.1128/mBio.02317-17”,“volume”:“9”,“author”:[{“family”:“Xu”,“given”:“Yongchang”},{“family”:“Wei”,“given”:“Wenhui”},{“family”:“Lei”,“given”:“Sheng”},{“family”:“Lin”,“given”:“Jingxia”},{“family”:“Srinivas”,“given”:“Swaminath”},{“family”:“Feng”,“given”:“Youjun”}],“accessed”:{“date-parts”:"2023",2,1},“issued”:{“date-parts”:"2018",4,10}}}],“schema”:“https://github.com/citation-style-language/schema/raw/master/csl-citation.json”}
<![endif]–>15<!–[if supportFields]><![endif]–> (Xu et al., 2018). With polymyxin
resistance becoming a bigger problem, more research on PbgA
will be beneficial for future antibiotic discovery.<o:p></o:p><p class=MsoNormal><o:p> </o:p><p class=MsoNormal><!–[if gte vml 1]><v:shape id=“image2.png” o:spid=“_x0000_i1025”
type=“#_x0000_t75” style='width:468pt;height:134pt;visibility:visible;
mso-wrap-style:square'><v:imagedata src=“Wiki%20Draft%20(1)_files/image019.png” o:title=“”/></v:shape><![endif]–><![if !vml]><img border=0 width=624 height=179
src=“Wiki%20Draft%20(1)_files/image020.gif” v:shapes=“image2.png”><![endif]><o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'>Figure X:
'The enzyme EptA
modifies LPS and reduces the negative charge of lipid A; therefore, prevents
colistin from binding and makes bacteria resistant to the antibiotic.<o:p></o:p><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><o:p> </o:p>'<p class=MsoNormal><b style='mso-bidi-font-weight:normal'>Conclusion:<o:p></o:p>
'<p class=MsoNormal>Antibiotic
resistance is a growing concern today and for our future. Gram-negative
bacteria have been particularly associated with antibiotic resistance due to the
presence of LPS in their cell wall, acting as a protective barrier against drugs.
The ability of these bacteria to rapidly evolve and develop resistance to
antibiotics has made it an ongoing challenge for scientists to find new ways to
combat these infections. Understanding the pathways in which LPS is synthesized
and regulated demonstrates importance pertaining to antibiotic drug targeting. Clairfeullie et al. contribute to this research through
characterizing PbgA and demonstrating how
manipulation of this protein could possibly be utilized in the lowering of LPS
levels and subsequently virulence by <i style='mso-bidi-font-style:normal'>E.
coli''.<o:p></o:p><p class=MsoNormal><o:p> </o:p><p class=MsoNormal><o:p> </o:p></div></body></html>