Trace:
Differences
This shows you the differences between the selected revision and the current version of the page.
public:research 2023/03/26 13:44 | public:research 2024/03/29 13:57 current | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Current Research Projects ====== | ====== Current Research Projects ====== | ||
- | ==== High Throughput Confocal Fluorescence Microscopy ==== | + | ==== Multiplexed Confocal Fluorescence Lifetime Imaging Microscopy ==== |
Comparing with conventional wide-field imaging microscopes, confocal microscopy hold significant advantages in image contrast enhancement, 3D sectioning capabilities, and compatibility with specialized detectors. For applications such as live cell imaging, slow acquisition speed is a key barrier to adaption of confocal microscopy. While wide-field microscopy is typically faster, multiplexed confocal schemes such as using a spinning foci array can significantly increase the image acquisition rate. The moving foci array in the spinning disc, however, prevents the use of specialized discrete photo detectors arrays. | Comparing with conventional wide-field imaging microscopes, confocal microscopy hold significant advantages in image contrast enhancement, 3D sectioning capabilities, and compatibility with specialized detectors. For applications such as live cell imaging, slow acquisition speed is a key barrier to adaption of confocal microscopy. While wide-field microscopy is typically faster, multiplexed confocal schemes such as using a spinning foci array can significantly increase the image acquisition rate. The moving foci array in the spinning disc, however, prevents the use of specialized discrete photo detectors arrays. | ||
Line 30: | Line 30: | ||
==== Imaging in the Gastrointestinal Tract ("Google Streetview" of the Colon) ==== | ==== Imaging in the Gastrointestinal Tract ("Google Streetview" of the Colon) ==== | ||
- | In colonoscopy, it is important to monitor the progression or recurrence of suspected cancerous lesions (e.g., polyps). Because the colon is contractile and mobile, however, it is very difficult to relocate a lesion (e.g., a polyp) even during the same procedure. We are developing a novel 360 degree panoramic imaging method to build a map of colon lining, during colonoscopy, and use it to locate and track cancerous and pre-cancerous lesions. This research will make colon cancer screening and treatments more effective. | + | In colonoscopy, it is important to monitor the progression or recurrence of suspected cancerous lesions (e.g., polyps). Because the colon is contractile and mobile, however, it is very difficult to relocate a lesion (e.g., a polyp) even during the same procedure. We are developing a novel 360 degree panoramic imaging method to build a map of colon lining, during colonoscopy, and use it to locate and track cancerous and pre-cancerous lesions. This research will make colon cancer screening and treatments more effective. |
+ | |||
+ | A motion tracking device was previously developed to provide the accurate position, rotation, and velocity of the endoscope to be used in both upper and lower gastrointestinal procedures. It will help gastroenterologists during examination, diagnosis, treatments, and follow-ups to record precise location information during a procedure whether it is for determining the exact area for follow-ups, training doctors, or comparing the size of a tumour. In the current phase, this prototype design is being optimized using modern camera and imaging features as well as hardware and software design to produce a more efficient product that can be used in a clinical setting. The benefits of this design as compared to other solutions are the cost-effective, small-sized, real-time, and software based approach that can simplify the design and minimize the weight of the device. It is also placed externally on the endoscope and does not go inside the patient which allows for it to be removed or disposed. | ||
\\ | \\ | ||
Line 51: | Line 53: | ||
**Publications:** | **Publications:** | ||
+ | * Bo Xiong, Tian-Qi Hong, Herb Schellhorn, Qiyin Fang, "Dual-Modality Imaging Microfluidic Cytometer for Onsite Detection of Phytoplankton," Photonics 8, 435, 2021. doi:10.3390/photonics8100435 ([[https://doi.org/10.3390/photonics8100435|Open Access]]) | ||
* Bo Xiong, Eric Mahoney, Joe F. Lo, Qiyin Fang, "A Frequency-domain optofluidic dissolved oxygen sensor with total internal reflection design for in situ monitoring", IEEE Selected Topics in Quantum Electronics, 27(4):1-7 2021, doi.org/10.1109/JSTQE.2020.2997810 ({{:public:publications:do_time_2020_jstqe_pre.pdf|Preprint PDF}}) | * Bo Xiong, Eric Mahoney, Joe F. Lo, Qiyin Fang, "A Frequency-domain optofluidic dissolved oxygen sensor with total internal reflection design for in situ monitoring", IEEE Selected Topics in Quantum Electronics, 27(4):1-7 2021, doi.org/10.1109/JSTQE.2020.2997810 ({{:public:publications:do_time_2020_jstqe_pre.pdf|Preprint PDF}}) | ||
* Eric James Mahoney, Bo Xiong, and Qiyin Fang, "Optical model of light propagation in total internal reflection fluorescence sensors," Applied Optics 59(34):10651-10660, 2020, doi:10.1364/AO.404112 ([[https://doi.org/10.1364/AO.404112|online]]) | * Eric James Mahoney, Bo Xiong, and Qiyin Fang, "Optical model of light propagation in total internal reflection fluorescence sensors," Applied Optics 59(34):10651-10660, 2020, doi:10.1364/AO.404112 ([[https://doi.org/10.1364/AO.404112|online]]) | ||
Line 91: | Line 94: | ||
==== Smart Aging ==== | ==== Smart Aging ==== | ||
- | The motivation behind developing a smart home for health monitoring is centered around two key aspects: (i) cost of care and (ii) quality of care. The public expenditure on health care in Ontario alone surpassed $50 billion in 2014. Our proposed strategy to reduce the growing financial and social pressure is to create a health institution within the home, allowing doctors and other healthcare providers to monitor and analyze the health of their patients remotely using low-cost non-invasive sensor and network technologies that are installed innocuously within the home. The project entails retrofitting the interior of the house to develop and test smart technology that will enable older people to live in their homes longer. The entire project combines a wide variety of sensors and cutting-edge technologies in an innovative manner to monitor the health of seniors. As well as helping older patients to live more safely and independently in their own homes, the research project seeks to relieve the burden on family members and caregivers, and reduce non-emergency visits to the hospital.\\ | + | We aim to develop wearable and ambient sensing device technologies and personalized AI/ML algorithms for continuous, longitudinal assessment of older adults' health conditions during their daily living activities (ADL). Such longitudinal health dataset will enable early detection and personalized management of chronic and neurodegenerative diseases. |
+ | \\ | ||
[[:public:research:shape-2021|Smart IPS Study]] \\ | [[:public:research:shape-2021|Smart IPS Study]] \\ | ||
[[:public:research:shape|McMaster Smart Home for Aging-in-PlacE]] | [[:public:research:shape|McMaster Smart Home for Aging-in-PlacE]] |