Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
group_4_presentation_2_-_chronic_obstructive_pulmonary_disease_copd [2016/11/03 23:23]
hongjj
group_4_presentation_2_-_chronic_obstructive_pulmonary_disease_copd [2018/01/25 15:18] (current)
Line 2: Line 2:
  
  
 +
 +{{:​4._copd-_presentation.pdf|}}
  
 ===== Introduction ===== ===== Introduction =====
Line 156: Line 158:
 Bronchodilators are a class of medications that are widely used to treat COPD and aid in preventing airflow obstruction in COPD patients (Shim, 1989). These drugs provide relief of some symptoms commonly associated with COPD, such as dyspnea or decreased exercise tolerance, through the relaxation of smooth muscle that line airways (Barnes, 1995). Due to the increase build-up of smooth muscle in COPD patients and subsequent impairment of lung function, these bronchodilators are extremely important in the prevention/​reduction of airway obstruction (Berge et al., 2011). The two main bronchodilators used in the treatment of COPD are beta-agonist’s and anti-cholinergic’s (Barnes, 1995). Beta-agonist’s are the most widely used bronchodilator typically used to treat COPD patients (Barnes, 1995). Beta-agonist’s act by binding to the adrenergic receptors on smooth muscle cells and cause an increase of cyclic-AMP (cAMP), a secondary messenger, within the smooth muscle cell. The increase in cAMP causes an intra-cellular cascade that ultimately leads to a relaxation of the smooth muscle surrounding the airway and thus causing bronchodilation (Tashkin & Fabbri, 2010). Long-acting beta-agonist’s in specific, such as formoterol or salmeterol, have been proven to more effectively than regular beta-agonist medications,​ primarily due to their rapid onset and long duration of action (Barnes, 1995). ​ Bronchodilators are a class of medications that are widely used to treat COPD and aid in preventing airflow obstruction in COPD patients (Shim, 1989). These drugs provide relief of some symptoms commonly associated with COPD, such as dyspnea or decreased exercise tolerance, through the relaxation of smooth muscle that line airways (Barnes, 1995). Due to the increase build-up of smooth muscle in COPD patients and subsequent impairment of lung function, these bronchodilators are extremely important in the prevention/​reduction of airway obstruction (Berge et al., 2011). The two main bronchodilators used in the treatment of COPD are beta-agonist’s and anti-cholinergic’s (Barnes, 1995). Beta-agonist’s are the most widely used bronchodilator typically used to treat COPD patients (Barnes, 1995). Beta-agonist’s act by binding to the adrenergic receptors on smooth muscle cells and cause an increase of cyclic-AMP (cAMP), a secondary messenger, within the smooth muscle cell. The increase in cAMP causes an intra-cellular cascade that ultimately leads to a relaxation of the smooth muscle surrounding the airway and thus causing bronchodilation (Tashkin & Fabbri, 2010). Long-acting beta-agonist’s in specific, such as formoterol or salmeterol, have been proven to more effectively than regular beta-agonist medications,​ primarily due to their rapid onset and long duration of action (Barnes, 1995). ​
  
-<box width classes round white centre|>​{{:​action_of_beta-agonists.png|}}</​box| Figure ​12: Mechanism of Action of Beta-Agonists>​+<box width classes round white centre|>​{{:​action_of_beta-agonists.png|}}</​box| Figure ​13: Mechanism of Action of Beta-Agonists>​
  
 The other kind of bronchodilator used are anti-cholinergic’s,​ also known as muscarinic antagonists. These not used as often as beta-agonist’s but have been shown to aid in improvement of airway flow in COPD patients as well (Barnes, 1995). Anti-cholinergic’s act by blocking the binding of acetylcholine,​ which is released from the pre-synaptic cleft of a neuron, to the smooth muscle acetylcholine receptor. By blocking the binding, anti-cholinergic’s are able to prevent bronchoconstriction (Tashkin & Fabbri, 2010).  ​ The other kind of bronchodilator used are anti-cholinergic’s,​ also known as muscarinic antagonists. These not used as often as beta-agonist’s but have been shown to aid in improvement of airway flow in COPD patients as well (Barnes, 1995). Anti-cholinergic’s act by blocking the binding of acetylcholine,​ which is released from the pre-synaptic cleft of a neuron, to the smooth muscle acetylcholine receptor. By blocking the binding, anti-cholinergic’s are able to prevent bronchoconstriction (Tashkin & Fabbri, 2010).  ​
  
  
-<box width classes round white centre|>​{{:​action_of_anti-cholinergics.png|}}</​box| Figure ​13: Action of Anti-Cholinergics>​+<box width classes round white centre|>​{{:​action_of_anti-cholinergics.png|}}</​box| Figure ​14: Action of Anti-Cholinergics>​
  
  
Line 168: Line 170:
 Studies have shown the long-acting beta-agonist’s (LABAs), such as formoterol, are the best course of medical treatments for individuals with COPD (Rossi, Khirani & Cazzola, 2008). These LABAs are more effective due to their rapid onset and prolonged duration (Barnes, 1995). When used, COPD patients saw improvement with common symptoms, such as dyspnea and decreased exercise tolerance, within minutes-hours after ingestion. Additionally,​ these drugs also helped improved lung function, reduce exacerbations and overall improve the health status of symptomatic patients with moderate-severe COPD (Rossi, Khirani & Cazzola, 2008). In a clinical study done by Van Noord et al. (2005), results showed that the efficacy of LABAs improved with the combined use of anti-cholinergic drugs. These results were only found in patients with severe COPD and only for the first 12-24 hours after ingestion (Van Noord et al., 2005). ​ Studies have shown the long-acting beta-agonist’s (LABAs), such as formoterol, are the best course of medical treatments for individuals with COPD (Rossi, Khirani & Cazzola, 2008). These LABAs are more effective due to their rapid onset and prolonged duration (Barnes, 1995). When used, COPD patients saw improvement with common symptoms, such as dyspnea and decreased exercise tolerance, within minutes-hours after ingestion. Additionally,​ these drugs also helped improved lung function, reduce exacerbations and overall improve the health status of symptomatic patients with moderate-severe COPD (Rossi, Khirani & Cazzola, 2008). In a clinical study done by Van Noord et al. (2005), results showed that the efficacy of LABAs improved with the combined use of anti-cholinergic drugs. These results were only found in patients with severe COPD and only for the first 12-24 hours after ingestion (Van Noord et al., 2005). ​
  
-<box width classes round white centre|>​{{:​improvement_of_lung_capacity.png|}}</​box| Figure ​14: Improvement of lung capacity, within the first 12-24 hours, in individuals with severe COPD after the ingestion of both long-acting beta-agonist’s and anticholingeric medications. Modified from: Van Noord et al. (2005)>+<box width classes round white centre|>​{{:​improvement_of_lung_capacity.png|}}</​box| Figure ​15: Improvement of lung capacity, within the first 12-24 hours, in individuals with severe COPD after the ingestion of both long-acting beta-agonist’s and anticholingeric medications. Modified from: Van Noord et al. (2005)>
  
  
Print/export
QR Code
QR Code group_4_presentation_2_-_chronic_obstructive_pulmonary_disease_copd (generated for current page)