Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
group_2_presentation_2_-_epilepsy [2017/11/02 23:27]
gaubaa old revision restored (2017/11/02 23:14)
group_2_presentation_2_-_epilepsy [2018/01/25 15:18] (current)
Line 1: Line 1:
 +Link to presentation:​ https://​docs.google.com/​a/​mcmaster.ca/​presentation/​d/​1dW15LKA4tzy2A1yKkckc6njZKW-URDgH05njQZ8UVXI/​edit?​usp=sharing
 +
 ====== Introduction ====== ====== Introduction ======
 Epilepsy is a chronic condition that affects the central nervous system and is characterized by a disruption in the normal functioning of neuronal signaling and activity. Epilepsy is characterized by the presence of unprovoked or spontaneously recurring epileptic seizures ranging in severity and occur within a short span of time. There is often no immediately identifiable trigger for epileptic seizures and two or more seizures occurring within a span of 24 hours is considered an isolated event. Seizures that occur during the neonatal period of life, and acute symptomatic seizures linked to substance abuse are not considered epileptic. (Banerjee, Filippi, & Hauser, 2009) (Scharfman, 2007). The spectrum of epileptic seizures range from a lapse in concentration to unconsciousness with regards to severity. In addition, the World Health Organization defines epilepsy as a prevalent and major health concern world wide, and statistics show that over 50 million individuals world-wide present the disorder (World Health Organization,​ 2015). Epilepsy is a chronic condition that affects the central nervous system and is characterized by a disruption in the normal functioning of neuronal signaling and activity. Epilepsy is characterized by the presence of unprovoked or spontaneously recurring epileptic seizures ranging in severity and occur within a short span of time. There is often no immediately identifiable trigger for epileptic seizures and two or more seizures occurring within a span of 24 hours is considered an isolated event. Seizures that occur during the neonatal period of life, and acute symptomatic seizures linked to substance abuse are not considered epileptic. (Banerjee, Filippi, & Hauser, 2009) (Scharfman, 2007). The spectrum of epileptic seizures range from a lapse in concentration to unconsciousness with regards to severity. In addition, the World Health Organization defines epilepsy as a prevalent and major health concern world wide, and statistics show that over 50 million individuals world-wide present the disorder (World Health Organization,​ 2015).
Line 217: Line 219:
 **Brain Surgery** **Brain Surgery**
  
-The goal of surgery is to find the epileptogenic focus which is not eloquent cortex and resect it without causing any neurological deficits. The most common focus point in adults is the temporal lobe (mainly the hippocampus). There are many ways to discover the area of epileptogenic focus: Video and scalp EEG, fMRI, MEG (magnetoencephalography),​ or seizure semiology. ​+The goal of surgery is to find the epileptogenic focus which is not eloquent cortex and resect it without causing any neurological deficits. The most common focus point in adults is the temporal lobe (mainly the hippocampus). There are many ways to discover the area of epileptogenic focus: Video and scalp EEG, fMRI, MEG (magnetoencephalography),​ or seizure semiology. ​(Kawai, 2015) 
 Surgery can be divided into either palliative or curative procedures. Curative procedures include lesional resection, lobectomy, and multiple subpial transections. For the treatment of temporal love epilepsy a gamma knife radiosurgery is used.  Surgery can be divided into either palliative or curative procedures. Curative procedures include lesional resection, lobectomy, and multiple subpial transections. For the treatment of temporal love epilepsy a gamma knife radiosurgery is used. 
  
Line 225: Line 228:
    
 Surgery is either used to define and resect an area of epileptogenic focus or disrupt the spread of seizure activity which in turn reduces the likelihood of seizures. Electrodes are used to record from the surface of the brain. One of the most common procedures is for medial temporal lobe epilepsy where the hippocampus is the main target for surgery. Surgery is either used to define and resect an area of epileptogenic focus or disrupt the spread of seizure activity which in turn reduces the likelihood of seizures. Electrodes are used to record from the surface of the brain. One of the most common procedures is for medial temporal lobe epilepsy where the hippocampus is the main target for surgery.
- +(Bromfield, 2006) 
-(Bromfield, 2006) (Kawai, 2015)+
  
  
Line 233: Line 235:
 Banerjee, P. N., Filippi, D., & Hauser, W. A. (2009). The descriptive epidemiology of epilepsy-a review. Epilepsy Research, 85(1), 31–45. http://​doi.org/​10.1016/​j.eplepsyres.2009.03.003 Banerjee, P. N., Filippi, D., & Hauser, W. A. (2009). The descriptive epidemiology of epilepsy-a review. Epilepsy Research, 85(1), 31–45. http://​doi.org/​10.1016/​j.eplepsyres.2009.03.003
  
-Bhalla, D., Godet, B., Druet-Cabanac,​ M., Preux, P.M. (2011). Etiologies of epilepsy: a comprehensive review. Expert Review of Neurotherapeutics. 11(6):​861-76 +Bhalla, D., Godet, B., Druet-Cabanac,​ M., Preux, P.M. (2011). Etiologies of epilepsy: a comprehensive review. Expert Review of Neurotherapeutics. 11(6):​861-76. Retrieved from https://​journals-scholarsportal-info.libaccess.lib.mcmaster.ca/​pdf/​14737175/​v11i0006/​861_eoeacr.xml
-https://​journals-scholarsportal-info.libaccess.lib.mcmaster.ca/​pdf/​14737175/​v11i0006/​861_eoeacr.xml+
  
 BRADFORD, H.F. (1995). Glutamate, GABA and epilepsy. Prog. Neurobiol., 47, 477–511. BRADFORD, H.F. (1995). Glutamate, GABA and epilepsy. Prog. Neurobiol., 47, 477–511.
  
-Bromfield EB, Cavazos JE, Sirven JI, editors. An Introduction to Epilepsy [Internet]. West Hartford (CT): American Epilepsy Society; 2006. Chapter 1, Basic Mechanisms Underlying Seizures and Epilepsy.Available ​from: https://​www.ncbi.nlm.nih.gov/​books/​NBK2510/​+Bromfield EB, Cavazos JE, Sirven JI, editors. An Introduction to Epilepsy [Internet]. West Hartford (CT): American Epilepsy Society; 2006. Chapter 1, Basic Mechanisms Underlying Seizures and Epilepsy. ​Retrieved ​from: https://​www.ncbi.nlm.nih.gov/​books/​NBK2510/​
  
 Cho, C.-H. (2013). New mechanism for glutamate hypothesis in epilepsy. Frontiers in Cellular Neuroscience,​ 7, 127. http://​doi.org/​10.3389/​fncel.2013.00127 Cho, C.-H. (2013). New mechanism for glutamate hypothesis in epilepsy. Frontiers in Cellular Neuroscience,​ 7, 127. http://​doi.org/​10.3389/​fncel.2013.00127
Line 244: Line 245:
 Dostrovsky, J. O. and Lozano, A. M. (2002), Mechanisms of deep brain stimulation. Mov. Disord., 17: S63–S68. doi:​10.1002/​mds.10143 Dostrovsky, J. O. and Lozano, A. M. (2002), Mechanisms of deep brain stimulation. Mov. Disord., 17: S63–S68. doi:​10.1002/​mds.10143
  
-Epilepsy Support Centre. (2015). Diagnosing Epilepsy. ​Available at: http://​epilepsysupport.ca/​seizure-education/​about/​diagnosing+Epilepsy Support Centre. (2015). Diagnosing Epilepsy. ​Retrieved from http://​epilepsysupport.ca/​seizure-education/​about/​diagnosing
  
 Fisher, R.S. (2017). The New Classification of Seizures by the International League Against Epilepsy 2017. Current Neurology and Neuroscience Reports, 17(48). https://​doi.org/​10.1007/​s11910-017-0758-6 Fisher, R.S. (2017). The New Classification of Seizures by the International League Against Epilepsy 2017. Current Neurology and Neuroscience Reports, 17(48). https://​doi.org/​10.1007/​s11910-017-0758-6
  
-Gilmour, H., Ramage-Morin,​ P., & Wong, S.L. (2016). Epilepsy in Canada: Prevalence and impact. Statistics Canada. http://​www.statcan.gc.ca/​pub/​82-003-x/​2016009/​article/​14654-eng.htm+Gilmour, H., Ramage-Morin,​ P., & Wong, S.L. (2016). Epilepsy in Canada: Prevalence and impact. Statistics Canada. ​Retrieved from http://​www.statcan.gc.ca/​pub/​82-003-x/​2016009/​article/​14654-eng.htm
  
 Goldberg, E. M., & Coulter, D. A. (2013). Mechanisms of epileptogenesis:​ a convergence on neural circuit dysfunction. Nature Reviews. Neuroscience,​ 14(5), 337–349. http://​doi.org/​10.1038/​nrn3482 Goldberg, E. M., & Coulter, D. A. (2013). Mechanisms of epileptogenesis:​ a convergence on neural circuit dysfunction. Nature Reviews. Neuroscience,​ 14(5), 337–349. http://​doi.org/​10.1038/​nrn3482
Line 265: Line 266:
 Banerjee, P. N., Filippi, D., & Hauser, W. A. (2009). The descriptive epidemiology of epilepsy-a review. Epilepsy Research, 85(1), 31–45. http://​doi.org/​10.1016/​j.eplepsyres.2009.03.003 Banerjee, P. N., Filippi, D., & Hauser, W. A. (2009). The descriptive epidemiology of epilepsy-a review. Epilepsy Research, 85(1), 31–45. http://​doi.org/​10.1016/​j.eplepsyres.2009.03.003
  
-Sills, G.J.(2006). The mechanisms of action of gabapentin and pregabalin. Current Opinions in Pharmacology.6(1);​108-126. https://​doi.org/​10.1016/​j.coph.2005.11.003. ​(http://​www.sciencedirect.com/​science/​article/​pii/​S1471489205001906)+Sills, G.J.(2006). The mechanisms of action of gabapentin and pregabalin. Current Opinions in Pharmacology.6(1);​108-126. https://​doi.org/​10.1016/​j.coph.2005.11.003.
  
-Stafstrom, C.E. (1998). Back to Basics: The Pathophysiology of Epileptic Seizures: A Primer For Pediatricians. Pediatrics in Review, 19(10). ​+Stafstrom, C.E. (1998). Back to Basics: The Pathophysiology of Epileptic Seizures: A Primer For Pediatricians. Pediatrics in Review, 19(10). ​Retrieved from http://​pedsinreview.aappublications.org.libaccess.lib.mcmaster.ca/​content/​19/​10/​342.long
  
 Treiman DM.(2001). GABAergic mechanisms in epilepsy. Epilepsia;​42:​Suppl 3:8-12 Treiman DM.(2001). GABAergic mechanisms in epilepsy. Epilepsia;​42:​Suppl 3:8-12
  
-World Health Organization. Epilepsy. Fact Sheet No. 999. Geneva: World Health Organization,​ 2015. Available at: http://​www.who.int/​mediacentre/​factsheets/​fs999/​en/​index.html+World Health Organization. Epilepsy. Fact Sheet No. 999. Geneva: World Health Organization,​ 2015. Retrieved from http://​www.who.int/​mediacentre/​factsheets/​fs999/​en/​index.html
  
-Uthman, B. M. (n.d.). (2000). Vagus nerve stimulation for seizures. Retrieved ​October 27, 2017, from https://​www.ncbi.nlm.nih.gov/​pubmed/​11036181+Uthman, B. M. (n.d.). (2000). Vagus nerve stimulation for seizures. Retrieved from https://​www.ncbi.nlm.nih.gov/​pubmed/​11036181
Print/export
QR Code
QR Code group_2_presentation_2_-_epilepsy (generated for current page)