Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
group_1_presentation_2_-alzheimer_s_disease [2017/11/04 00:53] tariqm2 [Targeting Aβ Plaques] |
group_1_presentation_2_-alzheimer_s_disease [2018/01/25 15:18] (current) |
||
---|---|---|---|
Line 139: | Line 139: | ||
Alzheimer’s Association. (n.d). Stages of Alzheimer’s & Symptoms. Retreived October 26, 2017, from https://www.alz.org/alzheimers_disease_stages_of_alzheimers.asp?type=brainTourFooter#overview | Alzheimer’s Association. (n.d). Stages of Alzheimer’s & Symptoms. Retreived October 26, 2017, from https://www.alz.org/alzheimers_disease_stages_of_alzheimers.asp?type=brainTourFooter#overview | ||
+ | |||
+ | Alzheimer's Disease and Related Dementias. (2016, August). Retrieved October 23, 2017, from | ||
+ | https://www.nia.nih.gov/health/alzheimer | ||
Anand, R., Gill, K. D., & Mahdi, A. A. (2014). Therapeutics of Alzheimer’s Disease: Past, Present and Future. Neuropharmacology, 76, 27–50. https://doi.org/10.1016/j.neuropharm.2013.07.004 | Anand, R., Gill, K. D., & Mahdi, A. A. (2014). Therapeutics of Alzheimer’s Disease: Past, Present and Future. Neuropharmacology, 76, 27–50. https://doi.org/10.1016/j.neuropharm.2013.07.004 | ||
Line 149: | Line 152: | ||
Bartus, R. T. (1978). Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: Effects of concurrent administration of physostigmine and methylphenidate with scopolamine. Pharmacology, Biochemistry and Behavior, 9(6), 833–836. https://doi.org/10.1016/0091-3057(78)90364-7 | Bartus, R. T. (1978). Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: Effects of concurrent administration of physostigmine and methylphenidate with scopolamine. Pharmacology, Biochemistry and Behavior, 9(6), 833–836. https://doi.org/10.1016/0091-3057(78)90364-7 | ||
+ | |||
+ | Bermejo-Pareja, F., Benito-León, J., Vega, S., Medrano, M., & Román, G. (2008). Incidence and subtypes of dementia in three elderly populations of central Spain. Journal of the Neurological Sciences, 264(1-2), 63-72. doi:10.1016/j.jns.2007.07.021 | ||
Bloudek L.M., Spackman D.E., Blankenburg M., & Sullivan, S.D. (2011). Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis, 26, 627–645. | Bloudek L.M., Spackman D.E., Blankenburg M., & Sullivan, S.D. (2011). Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis, 26, 627–645. | ||
+ | |||
+ | Citron, M. (2010). Alzheimer's disease: strategies for disease modification. Nature reviews Drug discovery, 9(5), 387-398. | ||
Clement, F., & Belleville, S. (2009). Test-retest reliability of fMRI verbal episodic memory paradigms in healthy older adults and in persons with mild cognitive impairment. Hum Brain Mapp, 30, 4033–4047 | Clement, F., & Belleville, S. (2009). Test-retest reliability of fMRI verbal episodic memory paradigms in healthy older adults and in persons with mild cognitive impairment. Hum Brain Mapp, 30, 4033–4047 | ||
Delacourte, A., & Defossez, A. (1986). Alzheimer's disease: Tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. Journal of the neurological sciences, 76(2), 173-186. | Delacourte, A., & Defossez, A. (1986). Alzheimer's disease: Tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. Journal of the neurological sciences, 76(2), 173-186. | ||
+ | |||
+ | DeMattos, R. B., Bales, K. R., Cummins, D. J., Dodart, J.-C., Paul, S. M., & Holtzman, D. M. (2001). Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98(15), 8850–8855. http://doi.org/10.1073/pnas.151261398 | ||
Ellis, J. M. (2005). Cholinesterase inhibitors in the treatment of dementia. The Journal of the American Osteopathic Association, 105(3), 145–158. https://doi.org/10.7556/JAOA.2005.105.3.145 | Ellis, J. M. (2005). Cholinesterase inhibitors in the treatment of dementia. The Journal of the American Osteopathic Association, 105(3), 145–158. https://doi.org/10.7556/JAOA.2005.105.3.145 | ||
Line 170: | Line 179: | ||
Hansen, R. A., Gartlehner, G., Webb, A. P., Morgan, L. C., Moore, C. G., & Jonas, D. E. (2008). Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Clin. Interventions Aging, 3(2), 211–225. | Hansen, R. A., Gartlehner, G., Webb, A. P., Morgan, L. C., Moore, C. G., & Jonas, D. E. (2008). Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Clin. Interventions Aging, 3(2), 211–225. | ||
+ | Hippius, H., & Neundörfer, G. (2003). The discovery of Alzheimer's disease. Dialogues in clinical neuroscience, 5(1), 101. | ||
Johnson, K. A., Fox, N. C., Sperling, R. A., & Klunk, W. E. (2012). Brain Imaging in Alzheimer Disease. Cold Spring Harb Perspect Med, 2(4), a006213. http://doi.org/10.1101/cshperspect.a006213 | Johnson, K. A., Fox, N. C., Sperling, R. A., & Klunk, W. E. (2012). Brain Imaging in Alzheimer Disease. Cold Spring Harb Perspect Med, 2(4), a006213. http://doi.org/10.1101/cshperspect.a006213 | ||
Line 177: | Line 187: | ||
Marcus, C., Mena, E., & Subramaniam, R. M. (2014). Brain PET in the Diagnosis of Alzheimer’s Disease. Clin Nucl Med, 39(10), e413–e426. http://doi.org/10.1097/RLU.0000000000000547 | Marcus, C., Mena, E., & Subramaniam, R. M. (2014). Brain PET in the Diagnosis of Alzheimer’s Disease. Clin Nucl Med, 39(10), e413–e426. http://doi.org/10.1097/RLU.0000000000000547 | ||
+ | |||
+ | Mayeux, R., & Stern, Y. (2012). Epidemiology of Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2(8), 10.1101/cshperspect.a006239 a006239. http://doi.org/10.1101/cshperspect.a006239 | ||
Putcha D, O’Keefe K, LaViolette P, O’Brien J, Greve D, Rentz D, Locascio JJ, Atri A, Sperling R (2010). Reliability of fMRI associative encoding memory paradigm in non-demented elderly adults. Hum Brain Mapp, 32(12), 2027-44. | Putcha D, O’Keefe K, LaViolette P, O’Brien J, Greve D, Rentz D, Locascio JJ, Atri A, Sperling R (2010). Reliability of fMRI associative encoding memory paradigm in non-demented elderly adults. Hum Brain Mapp, 32(12), 2027-44. | ||
+ | |||
+ | Reitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Reviews. Neurology, 7(3), 137–152. http://doi.org/10.1038/nrneurol.2011.2 | ||
Rocher, A.B., Chapon, F., Blaizot, X., Baron, J.C., Chavoix, C. (2003). Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: A study in baboons. Neuroimage 20, 1894–1898 | Rocher, A.B., Chapon, F., Blaizot, X., Baron, J.C., Chavoix, C. (2003). Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: A study in baboons. Neuroimage 20, 1894–1898 |