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In order to simplify the design process of microfabricated concave gratings, simplified algorithms for fast
characterization of the concave grating were developed. These algorithms can be used to assist system
designers using ray-tracing software in the determination of optimum design parameters considering the
requirements and restrictions for specific applications. According to the algorithms, it is feasible to design
a flat field microconcave grating with a 4 mm grating radius as a key component in a micro-Raman
spectrometer system for inline environmental monitoring applications. This microspectrometer operates
over the spectral wavelength band from 785 nm to 1000 nm and has a spectral resolution of 2 nm at
900 nm. The total size of the system is 1 mm× 4 mm× 3.7 mm, making it one of the smallest for this
wavelength range and spectrum resolution. © 2012 Optical Society of America
OCIS codes: 050.1950, 050.2770, 080.2740, 080.1005, 120.6200, 170.5660.

1. Introduction

Water safety is a major concern in many countries
throughout the world. Harmful chemicals and bac-
teria in the water supply pose significant health risks
for humans. To monitor water quality and improve
water safety, a low-cost, compact, sensitive, and easy-
to-use detection system is required. For monitoring
chemical and biological contaminants in water, opti-
cal methods have attracted much interest due to
their noncontacting and nondestructive properties
[1–3]. Among the various optical techniques being
considered, Raman spectroscopy, as a chemical com-
position characterization technique, possesses sev-
eral advantages over other optical methods in water

monitoring and other applications [4]. For example,
there is flexibility in the choice of excitation source,
which can suppress the strong absorption by water in
the infrared region.

A typical Raman spectrometer usually involves a
planar dispersive element, a collimating mirror,
and a focusing mirror. However, these spectrometers
are mainly limited to laboratory use because of their
complex arrangement, large size, and high cost.
Recently, planar-grating-based microspectrometers
[5,6] have been proposed with good performance in
spectral resolution. However, the use of planar grat-
ings still restricts their miniaturization, especially
when it comes to the microsized spectrometers.

On the other hand, a concave grating has great po-
tential for the miniaturization of a Raman spectro-
meter. This is because of its ability to achieve both
wavelength separation and light focusing without
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additional auxiliary optical components [7]. In 2008,
a concave-grating-based microspectrometer of total
size of 11 mm × 5 mm × 6 mmwas reported [8]. How-
ever, the design was aimed at a broad wavelength
band (400–1030 nm) and the spectrum resolution in
near infrared region was about 5 nm. In [9], a micro-
spectrometer with 44.4 mm grating radius that
achieved 0.9 nm resolution at 1550 nm was reported.
However, the circular horizontal focal curve of the
grating makes it difficult to be focused onto a flat
field image sensor.

The design of a concave grating usually involves
the analysis of optical path function and optimiza-
tion of aberrations for different grating configura-
tions (Rowland or flat field) [10,11], a very
cumbersome process. Therefore, to simplify the de-
sign process and achieve fast characterization of the
system’s performance, a simplified algorithm based
on aberration theory was developed. Based on this
algorithm, the system’s spectral resolution can be
calculated for different system parameters. This is
very helpful in determining the optimum combina-
tion of the design parameters for specific applications
and benefits the optical design using ray tracing soft-
ware. This algorithm was also used to design a flat
field concave-grating-based micro-Raman spectro-
meter that covers the near infrared region with
sufficient spectral resolution for Raman spectroscopy
[12,13].

2. Theory

The schematic diagram of a Rowland-configuration-
based concave grating is illustrated in Fig. 1. The
larger circle, Grating circle (blue) with radius R
and center O, represents the grating and the smaller
one (red) with diameterR is the Rowland circle [7]. In
a Rowland configuration, the entrance slit is placed
on the Rowland circle. Points X and Y are two arbi-
trary points on the grating curvature andOX andOY
are their normal, respectively. If the arc length XY is
small compared to the grating radius R, then X and
Y can be assumed to also be on the Rowland circle. In
this case, the incident angles α and γ are identical.

According to the grating Eq. (1) for a certain
diffraction orderm, wavelength λ, and groove density
G, the same incident angles have the same

diffraction angles, which means that β and δ in Fig. 1
are also identical.

sin α� sin β � mGλ. (1)

Therefore, light of wavelength λ diffracted from dif-
ferent points of the grating will intersect with the
Rowland circle at the same point [B1 (λ1) or B2
(λ2)], which gives rise to the focusing property of a
concave grating.

3. Grating Design

In designing a concave-grating-based spectrometer
system, there are several important parameters, in-
cluding the wavelength band, grating period, grating
radius, and incident angle. Since we are interested in
monitoring for bacteria and chemical contaminants
in drinking water, then we need to suppress the
influence of fluorescence and guarantee adequate
quantum efficiency of silicon image sensor. There-
fore, the excitation source is chosen to be a 785 nm
laser. Based on this excitation source and considering
the absorption limitation of silicon-based detectors at
longer wavelengths above 1000 nm, the wavelength
band of this design was set to be between 785 nm and
1000 nm, which is adequate for our application. This
choice is because the Raman shift for most bacterial
and chemical contaminants is between 500 cm−1 and
2000 cm−1 [1,14], and the Raman signal is between
817 nm and 931 nm consequently, which is inside
the wavelength band we have set. With this wave-
length band, the grating period and incident angle
can be determined through simulations of the diffrac-
tion efficiency.

A grating simulation program, Pcgrate (I.I.G., Inc.,
New York, USA) [15], was used in this work. Accord-
ing to the simulation results, the incident angle is set
to be between 20° and 40°. In Fig. 2, the simulation
results of diffraction efficiency with different grating
periods, assuming a 30° incident angle and an
Al-coated sinusoidal grating, are presented. Based
on the results in Fig. 2, the grating period used in
this work was set to be 1 μm.

Fig. 1. (Color online) Rowland-configuration-based concave
grating.
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Fig. 2. (Color online) Diffraction efficiency with different grating
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The spectral resolution is an important parameter
relevant to the resolving power of a grating system.
The resolution is influenced by several structural/
geometric parameters, including grating radius,
groove density, incident angle, and distances be-
tween the grating and the entrance and exit slits. Ac-
cording to [16], there are several contributions to the
total spectral resolution in a grating-based system.
These contributions include entrance slit, exit slit,
aberration, and diffraction limitations. The Gaussian
sum of these contributions gives the overall resolu-
tion. Since the diffraction beam from the concave
grating is directed to the detector array in our sys-
tem, the resolution influenced by the entrance slit,
diffraction limitation, and aberration were consid-
ered and calculated [16] using Eqs. (2)–(4) below.

ΔλEntrance �
Sd cos α

mrin
; (2)

ΔλAberration � Δx cos β

mrb
; (3)

ΔλDiffraction � λ

mN
: (4)

In Eqs. (2)–(4), d is the grating period, m is the dif-
fraction order, N is the number of grooves illumi-
nated by the incident light, rin is the distance from
entrance slit to grating center, rb is the distance from
grating center to image plane, α is the incident angle,
β is the diffraction angle, andΔx is the horizontal de-
viation caused by aberration.

From Eqs. (2)–(4), both Δλentrance and Δλdiffraction
can be determined when the grating mounting is
fixed. Therefore, to compute the total resolution,
we need to calculate the aberration contribution.
Basically, the main sources of aberration are defocus,
astigmatism, coma, and spherical aberration as well
as higher-order aberrations. Astigmatism contri-
butes the most, followed by coma, and then spherical
aberration [17].

Figure 3 shows the geometry of a concave reflec-
tion grating with a point sourceA� xA yA 0 �, where
the x-axis is perpendicular to the grooves and the
z-axis is parallel to the grooves. Light diffracted from
point O�0 R 0 � and point P� xp yp zp � inter-
sects with the image plane at B0 and B, respectively.
The optical path difference function is usually used
to characterize aberration. Equation (5) gives the op-
tical path difference function F between APB and the
principal ray AOB0, and its power series expansion in
terms of xp and zp (constant line space grating):

F � APB − AOB0 �mNλ �
X
i;j

xipzip
i!j!

Fij; (5)

where Fij � ∂i�j�APB−AOB0�
∂xi∂zj

and ∂i�mNλ�
∂xi

� ∂j�mNλ�
∂zj

�
0 (i ≥ 2).

The coefficient Fij in Eq. (5) is related to aberration
and can be used to calculate both the horizontal and
vertical deviation between B and B0. For example,
Fi�j�2 relates to astigmatism and Fi�j�3 and Fi�j�4
correspond to coma and spherical aberration, respec-
tively. The deviation in horizontal and vertical direc-
tion [17] is given by

Dh � rb
cos β

∂F
∂xp

� rb
cos β

�
xpF20 �

1
2
x2pF30 �

1
2
z2pF12

� 1
6
x3pF40 �

1
2
xpz2pF22 �…

�
(6)

and

Dv � rb
∂F
∂zp

� rb

�
zpF02 � xpzpF12 �

1
6
z3pF04 �

1
2
zpx2pF22 �…

�
:

(7)

If we consider the first 6 terms of aberration
(i� j ≤ 6), then the image of a point source can be
constructed based on Eqs. (6) and (7). Figure 4(a)
shows the illuminated area on a concave grating by
a point source. Figure 4(b) shows its image calculated
using MatLab. The parameters used in this simula-
tion include 35° incident angle, 4 mm grating radius,
and 1 μm constant grating period. However, calcula-
tion of all power series coefficients is a complex pro-
cess. Based on the weight of different terms in the
total resolution, simplified algorithms will be devel-
oped for direct calculation of spectrum resolution.
Depending on the shape of the illuminated area,
there are basically two situations.

Fig. 3. (Color online) Geometry of a concave grating: A–point
source, O–grating center, B–image of point source in image plane,
P–arbitrary point on grating surface.
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First, a point source usually illuminates a grating
with an area of height h and width w [see Fig. 4(a)].
Generally, the height h is close to the width w or in
the same order of magnitude. From the simulation
results in Fig. 4, light diffracted from A and B inter-
sect with the image plane at A0 and B0, respectively.
In this case, the largest horizontal deviation, which
determines Δλaberration, will be caused by A rather
than B. If zp is the vertical coordinate of A, then
the horizontal coordinate xp will be very small.
Therefore, Eq. (6) can be simplified as Eq. (8) and is

Dh � rb
cos β

∂F
∂xp

� rb
cos β

�
1
2
z2pF12 �

1
24

z4pF14 �…

�
;

(8)

with F12 � sin α
rin

�
1
rin

− cos α
R

�
� sin β

rb

�
1
rb
−

cos β
R

�
and

F14 � 3 sin α

R2r2in
�1 − 3 cos2 α� − 9 sin α

r4in

� 3 sin α cos α

Rrin

�
6

r2in
−

1

R2

�
�…

3 sin β

R2r2b
�1

− 3 cos2 β� − 9 sin β

r4b
� 3 sin β cos β

Rrb

�
6

r2b
−

1

R2

�
:

With the increase of (i� j), the contribution of
higher-order aberration to the total resolution be-
comes smaller and only �i� j� ≤ 5 terms are consid-
ered in this work. Therefore, with F12 and F14, the
aberration contribution can be calculated using

Δλabr �
d
m

�
1
2
z2pF12 �

1
24

z4pF14

�
: (9)

Using Eqs. (8) and (9), Fig. 5(a) gives the variation
of F12 and F14 as a function of incident angle.

Figure 5(b) shows the aberration contribution when
considering F12 and (F12 � F14), respectively. From
the calculations shown, we concluded that consider-
ing only F12 is adequate to quantify the aberration
contribution. Although jF12j is smaller than jF14j,
considering the fact that zp is also very small, this
causes the first term on right side of Eq. (9) to be
much larger than the second term. For the purposes
of further simplifying the calculation process, F12 is
simplified, and Eq. (9) can now be rewritten as

Δλabr �
1
2
d
m

z2p

�
sin α

rin

�
1
rin

−
cos α

R

�
�mGλ − sin α

r2b

−
mGλ − sin α

Rrb
� �mGλ − sin α�3

2Rrb

�
: (10)

However, in some situations, mirrors are used to
restrict light transmission in some direction, func-
tioning like a waveguide. In this case, the spot height
hwill be much smaller than spot widthw (green area
in Fig. 4). Therefore, the largest horizontal deviation
will be caused by point B, rather than point A. If
�xp; yp; zp� is the coordinate of point B, zp will be close
to zero. In this case, the aberration relevant contri-
bution can be calculated by using Eq. (11) (Rowland
configuration, F20 � F30 � 0), and is

Δλabr �
d
m

rb
cos β

∂F
∂xp

� d
m

rb
cos β

�
1
6
x3pF40�

1
24

x4pF50�
1

120
x5pF60�…

�
:

(11)

Based on Eq. (11), Fig. 6 shows the variation of reso-
lution with incident angle when considering only F40,
(F40 � F50) and (F40 � F50 � F60). According to the
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Fig. 4. (Color online) (a) Illuminated area of a point source. (b) Image of a point source.
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calculation, the deviation mainly happens when
using a large incident angle (>60°) or a very small
incident angle (>10°). Since the incident angle of this
work is between 20° and 40°, using only the F40 term
is enough to calculate the aberration contribution.

Note that F40 is given by

F40 �
3cos2α

r3in
�5sin2α−1��6 cos α

Rr2in
�1−3sin2α�

�3sin2α

R2rin
−
3 cos α
R3 …�3cos2β

r3b
�5sin2 β−1�

�6 cos β
Rr2b

�1−3sin2 β��3sin2β

R2rb
−
3 cos β
R3 : (12)

For the Rowland configuration, F40 can be further
simplified as

F40 � 3

R3

�
1

cos α
− cos α

�
� 3�mGλ − sin α�2

R3
�
1 − 1

2 �mGλ − sin α�
� :

(13)

Equation (13) has been tested using the parameters
in [9]. The result of the calculations is ∼1 nm resolu-
tion, which is in very good agreement with both the
calculations (0.9 nm) and measurements (1.1 nm) re-
ported in [9]. Equation (10) is tested by applying to
the data in [18], which gives a spectrum resolution of

Δλ�
�����������������������������������������������
Δλ2abr�Δλ2En�Δλ2diff

q
�

�����������������������������������������������
0.942�0.192�0.152

p
�0.97 nm. This result is close to the measured spec-
tral resolution of 0.9 nm in [18]. Figure 7(a) shows
the ray tracing result of a concave grating by Zemax.
Figure 7(b) shows the spot diagram of a point source
under four different incident angles from 20° to 70°.
The colors in Fig. 7(b) represent three different
wavelengths with 1.5 nm step. According to the ray
tracing results in Fig. 7, a 35° incident angle gives
better resolution than other angles, and the spectral
resolution of a point source under 35° incident is
about 1.5 nm, which proves the calculation result by

aberration theory in Fig. 5(b) of
��������������������������������
Δλ2abr �Δλ2diff

q
��������������������������������

1.092 � 1.132
p

� 1.57 nm.
After combining all the contributions from aberra-

tion, diffraction limitation, and entrance slit, the
overall resolution is obtained. Figure 8 gives the de-
pendence of the total resolution on different system’s
parameters of both situations discussed above: when
the height h is close to the width w [Fig. 8(a)], or
when h is much smaller than w [Fig. 8(b)].

The numerical aperture (NA) in Fig. 8 refers to the
NA of the entrance fiber. Based on the results in
Fig. 8, the value of total resolution decreases with
decreasing NA at first (stage 1), then it reaches
the minimum value at about 0.1, after which, the
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resolution changes in the opposite way, with a
further decreased NA (stage 2). Among the three
contributions, ΔλEntrance is independent of NA,
ΔλAberration is proportional to NA, and ΔλDiffraction is
inversely proportional to NA. For stage 1,
ΔλAberration changes faster thanΔλDiffraction; therefore,
total resolution is proportional to the NA. After the
minimum point is reached,ΔλDiffraction changes faster
than ΔλAberration, and the overall trend is inversely
proportional to NA in stage 2. Moreover, a large
grating radius has a better resolution due to the re-
latively smaller aberration. Therefore, to achieve
good resolution, most concave gratings use large
grating radii. Based on the requirements and
limitations of the specific applications, the above

algorithms can be used to determine the optimum
combination of different design parameters. Since
our target is a microspectrometer for inline monitor-
ing, then the grating radius was chosen to be 4 mm.
With this radius, according to the results in Fig. 8,
reasonable resolutions were obtained.

4. Flat Field Concave Grating

One important disadvantage of concave grating is
the circular horizontal focal curve. Setting F20 � 0,
then rb in F20, together with the diffraction angle
β from grating equation, give the horizontal focal
curve. Since the image sensor typically has a planar
photosensitive area [19], then using such a planar
surface to collect diffraction light from concave

Fig. 7. (Color online) (a) Ray tracing of a point source by Zemax. (b) Spot diagram of three different wavelengths, including 900 nm,
901.5 nm, and 903 nm.
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gratings will make the resolution worse. Considering
the fact that a concave surface imager sensor is not
common, then a flat field concave grating (linear
focal curve) is a better solution to this problem.
For a concave grating with constant groove density
in the x direction, F20 is given by

F20 �
�
cos2 α
rin

−
cos α

R

�
�

�
cos2 β
rb

−
cos β

R

�
: (14)

To change the shape of the horizontal focal curve, one
effective way is to use the varied line space concave
grating, by which, ∂i�mNλ�

∂xi
≠ 0 and the power series

coefficients can be rewritten [11] as

Fij � Mij �mG0λHij: (15)

In Eq. (15), the first term Mij on right side is deter-
mined by the mounting information of the grating,
such as the positions for entrance slit, grating, and
image plane. Note that Hij is relevant to the groove
density distribution along the x direction and it can
be determined based on the optimization of the focal
curve and aberration. Also, G0 is the groove density
at the grating center. To determine the structural in-
formation, each of the Hij terms should be solved.
Therefore, in this work, specific algorithms are de-
rived for calculating the parameters of the flat-field
concave grating.

A reference point Q0 is picked from the horizontal
focal curve at first, and thewavelength corresponding
to Q0 is λ0. To make the focal curve linear, the slope
kQQ0

between the reference point Q0� λ0 x0 y0 �
and any other point Q� λ x y � should be constant.
That is,

kQQ0
� y − y0

x − x0
� C; (16)

where x0 � rb0 sin β0, y0 � R − rb0 cos β0, x �
rb sin β, y � R − rb cos β.

Applying the grating equation to Eq. (16), the slope
between Q and Q0 can be written as

kQQ0
�t� � rb0 cos β0 − rb cos β

rb sin β − rb0 sin β0

� rb0
����������������������������������������������
1 − �mG0λ0 − sin α�2

p
− rb

�������������
1 − t2

p

rb · t − rb0�mG0λ0 − sin α� ;

(17)

where rb � cos2 β
cos β
R −mG0λ·H20

� R�1−t2�
�1−t2�12−R·t·H20−R sin α·H20

, t �
mG0λ − sin α.

For a power series expansion of Eq. (17) in terms of
t, we get

kQQ0
�t�� g�t�� g0�g0�0�t�1

2
g00�0�t2�1

6
g000�0�t3�…:

(18)

To guarantee a constant slope, which means keeping
only the g0 term, then the sum of all other terms is
set to zero. The idea of a flat field concave grating is
to find a specific H20 which makes the sum of all “t”
terms in Eq. (18) close to zero. To avoid the effect of
“pole point” and to make the focal curve stable, the
reference wavelength should be chosen out of the
wavelength band. Using the Taylor’s expansion
formula, the best H20 is found to be

H20 �
�����������������������������������
jmG0λ0 − sin αj

p
RmG0λ0

: (19)

Besides H20, other Hij terms can also be determined
to reduce aberration such as coma and spherical
aberration. After determining all of the Hij terms,
the groove density can be written as

G � G0 ×
�
1�H20x�

1
2
H30x2 �

1
6
H40x3

�
: (20)
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Since the wavelength band of our application was
between 785 nm and 1000 nm, then the reference
wavelength was chosen to be 1400 nm, which gave
a value for H20 of ∼0.13. Then, H30 and H40 are cal-
culated to be 1.38 × 10−2 and 7.3 × 10−3, respectively.
Other parameters that were used include the center
grating period (1 μm), radius (4 mm), and incident
angle (40°). Figure 9(a) gives the groove density
along the x direction and Fig. 9(b) shows the horizon-
tal focal curve of the varied space concave grating.

As we can see from Fig. 9(b), the focal curve has
been changed to be linear and the distance from
the grating to image plane is also increased. Due
to the increased distance and reduced aberration,
the aberration contribution to resolution in this case
is better than constant space concave grating. Table 1
gives the detailed information for both a constant
line space concave grating and a varied line space,
flat field concave grating. The parameters used for
the entrance slit include the NA (0.1) and diameter
(5 μm). Based on the results in Table 1, both the

constant space and varied line space concave grat-
ings provide a resolution better than 2 nm. To avoid
the interference between the incident beam and the
diffraction beam, the incident angle of the varied
space grating is set to 40°.

According to the parameters in Table 1, Fig. 10
shows the schematic diagram of the concave micro-
grating system. In this system, a baffle was added
to avoid direct illumination from the entrance to
the detector. To make the whole system more com-
pact, a mirror was used to reflect the diffraction
beams to detector1, and the total size is about
1 mm × 4 mm × 3.7 mm. This compact system covers
a wavelength band from 785 nm to 1000 nm, while
the area we are interested is between 817 nm and
931 nm as mentioned above. This wavelength range
is marked by the green dashed lines in both detector
and detector1.

5. Conclusions

A concave micrograting with 4 mm grating radius is
designed andmodeled. To simplify the design process
and achieve rapid calculation for spectral resolution,
simplified algorithms have been developed based on
the aberration theory. To further solve the problem
associated with the circular horizontal focal curve,
the design of a varied line space concave grating is
discussed and relevant algorithms are derived.
Using the theory and algorithms developed, an ex-
ample design of a microspectrometer using this con-
cave micrograting of total size 1 × 4 × 3.7 mm3 is
demonstrated. This grating is one of the smallest
ones for wavelength band of 785 to 1000 nm, and it
demonstrated excellent spectral resolution of ∼2 nm
at 900 nm and ∼2.3 nm at 1000 nm. Although the
system NA (0.1) is sacrificed for a compact system,
this compromise will be ameliorated by employing
a high-sensitivity photon detection system such as
one based on single photon avalanche photodiodes.
Finally, because of its compact size and spectral char-
acteristics, the proposed concave micrograting can be
used in optical systems for monitoring bacteria and
chemical contaminants in drinking water.
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Table 1. Parameters for Two Types of Different Configurations at 900 nm

F20 F02 F30 F12 F40 F04 F22 Δλabr (nm) Δλdiff (nm) Δλen (nm) ΔλTot (nm)

A 0 0.13 0 0.02 0.024 0.09 0.02 1.09 1.13 1.25 2.00
B 0 −0.002 0 0.013 −9.6E − 05 0.05 0.01 0.71 1.13 1.25 1.83
C 0 0.026 0 0.025 4.4E − 03 0.06 0.02 1.17 1.13 1.25 2.04

A—Constant space, 35° incident, 1 μm groove density;
B—Varied space, 35° incident;
C—Varied space, 40° incident.
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Fig. 10. (Color online) Schematic diagram of concave micrograt-
ing spectrometer system.
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