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Optical spectroscopy of human tissue has been widely applied within the field of biomedical optics to
allow rapid, in vivo characterization and analysis of the tissue. When designing an instrument of this
type, an imaging spectrometer is often employed to allow for simultaneous analysis of distinct signals.
This is especially important when performing spatially resolved diffuse reflectance spectroscopy. In
this article, an algorithm is presented that allows for the automated processing of 2-dimensional
images acquired from an imaging spectrometer. The algorithm automatically defines distinct spec-
trometer tracks and adaptively compensates for distortion introduced by optical components in the
imaging chain. Crosstalk resulting from the overlap of adjacent spectrometer tracks in the image
is detected and subtracted from each signal. The algorithm’s performance is demonstrated in the
processing of spatially resolved diffuse reflectance spectra recovered from an Intralipid and ink
liquid phantom and is shown to increase the range of wavelengths over which usable data can be
recovered. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973122]

I. INTRODUCTION

Imaging spectrometers are used in various scientific appli-
cations in order to analyze a signal in both the spectral and
spatial domains. Imaging spectrometers have been utilized for
large scale hyperspectral imaging with both terrestrial1 and
astronomical2 applications and smaller scale biomedical appli-
cations including hyperspectral microscopy,3 fluorescence,4

and reflectance5 spectroscopy. In this paper, a processing algo-
rithm is presented that corrects for distortion and crosstalk
effects in images obtained from a fibre optic probe coupled to
an imaging spectrometer.

Diffuse reflectance spectroscopy (DRS) is an optical tech-
nique commonly used to analyze the composition of human
tissue. It has been investigated for use in many different appli-
cations of biomedical optics, from the characterization of skin
lesions6 to discrimination of esophageal malignancies7 to the
in vivo assessment of colon tissue in colorectal cancer pa-
tients.8 A broadband light source (ultraviolet, visible, or near
infrared depending on the application) illuminates the tissue,
and a spectrometer is used to collect the reflectance spectrum
allowing for quantitative analysis of the results.9–11 Optical
fibres are often used both to deliver light to the tissue and
collect the resulting reflectance. The features of the reflectance
spectrum can be observed directly to analyze tissue compo-
sition,12,13 or used to recover the optical properties of the
sample, providing a quantified measure of how light interacts
with the tissue.8,14,15 Optical properties recovered from diffuse
reflectance data include the reduced scattering coefficient (µ′s)
and the absorption coefficient (µa).

Methods for recovering optical properties from diffuse
reflectance data include frequency (or time) domain anal-
ysis16,17 and spatial domain analysis.8,15 In either of these
approaches, measured reflectance curves are fit with the results
of a theoretical model generated from approximate solutions of
the diffusion equation or Monte Carlo simulation. The optical
properties that generate the best fit to the measured data are
accepted as the properties of the tissue.

A well-established method for measuring spatially
resolved diffuse reflectance data uses an imaging spectrometer
and CCD camera to capture the output from multiple optical
fibres.5,10,18 Detector fibres are placed at different distances
from a source fibre so that the system is able to simultaneously
capture both spatially and spectrally resolved data in a single
measurement. The fibres are embedded in a probe, making
for an easy to use measurement device with fixed source-
detector distances (SDDs). At the opposite end, the fibers
are connected to the imaging spectrometer and CCD. Each
detector fibre is physically separated from the others at the
entrance to the spectrometer, as demonstrated in Fig. 1(a). As
the spectrometer resolves each fibre’s output by wavelength,
this produces an image of “tracks” on the CCD, Fig. 1(b).
Some image processing is required to separate each track
from its neighbours and determine the spectral intensity of
each detector fibre.

In this article, an automatic image processing routine
used to define spectrometer tracks in an imaging spectrom-
eter based spatially resolved diffuse reflectance system is
described. This is a flexible improvement over previous algo-
rithms, as it compensates for distortion introduced by the
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FIG. 1. (a) Individual fibres are physically separated before entering the
spectrometer. (b) An example of the image acquired by the CCD. Each track
corresponds to a separate fibre and the source-detector distances of each fibre
are indicated in mm.

optical chain and adaptively subtracts crosstalk resulting from
the overlap of detector tracks. Although this algorithm was
designed specifically for the setup described below, it can be
readily adapted for use with other imaging spectrometer based
systems.

FIG. 2. The arrangement of fibres across the surface of the epoxy probe.
The source fibre is used to deliver light to the tissue, and the centre to centre
distance of each detector from the source is indicated in mm. Each fibre has
a core diameter of 100 µm.

FIG. 3. The equipment used to acquire diffuse reflectance spectra.

II. MATERIALS AND METHODS

The equipment used by our group has been described
previously by Pekar and Patterson.5 In summary, a broadband
tungsten-halogen light source (Oriel Instruments, Stratford,
CT) was used to illuminate a sample through a 100 µm optical
fibre embedded in a handheld epoxy probe. Detector fibres
were arranged across the surface of this probe according to
the layout shown in Fig. 2. Multiple detector fibres were used
at the outermost distances to partially compensate for the
decreased signal at these distances. Each detector fibre was
attached to a variable attenuator (OZ optics, Ottawa, Ontario)
to allow further balancing of the signals and fit the entire image
within the dynamic range of the CCD. The outputs of the
attenuators were sent through an imaging spectrometer (Kaiser
Optical Systems, Ann Arbor, MI) and the image was acquired
using an attached cooled CCD (Princeton Instruments, Tren-
ton, NJ). The digitized signal was collected using Princeton
Instrument’s WinSpec software package and all analysis was
performed using Matlab (The Mathworks, Natick, MA). A
diagram of the system is shown in Fig. 3. For every acquisition,
a dark background image was also collected and subtracted
from the data.

The reflectance from each detector fibre broadens as it
travels from the spectrometer grating to the CCD such that the
signal from two separate fibres overlaps slightly. This unde-
sired effect is referred to as crosstalk in this article. Despite
the use of variable attenuators on each fibre, the signals from
fibres at shorter SDDs were still more intense than those at

FIG. 4. The curvature of the tracks on the spectrometer image. The locations
of peak intensity of selected tracks are plotted in red. Examination of the
tracks reveals a distinct curvature towards the top and bottom of the image,
most significant for the outermost tracks.
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FIG. 5. Track edge identification. This step in the algorithm operates along vertical lines through the image, with each line having a width of 1 pixel,
approximately 0.5 nm. The plot displays the image intensity along the 650 nm line. Inset: the midpoint between two adjacent tracks is identified by finding
the local minimum of smoothed data in this region. The red circle identifies the point in the original (unsmoothed) data that corresponds to the minimum of the
smoothed data. The edges of the two adjacent tracks are defined as the points at which the intensity is 1.05 times the intensity at the circled point (the two lines
at 675 and 685).

larger distances. To reduce the influence of crosstalk in the
final image, the fibres were arranged such that those with a
more intense signal (shorter SDDs) were located at the top
and bottom of the image, while the less intense signals (large
SDDs) were clustered near the middle. The positioning of each
fibre on the CCD image is shown in Fig. 1(b).

Inspection of the CCD images reveals that each track
follows a curved shape. This is demonstrated in Fig. 4, a plot
of the peak intensity of selected tracks across the spectrum.
The curvature is more pronounced for the outermost tracks
and results from image distortion between the spectrometer
and CCD. To compensate for this distortion and other potential
irregularities in track size, an algorithm was developed to auto-
matically define track boundaries. Although these boundaries
are not expected to vary significantly for different measure-
ments, the algorithm is applied to CCD images on an indi-
vidual basis.

The initial steps in the analysis were applied at each
wavelength along lines perpendicular to the intensity tracks,
as demonstrated in Fig. 5. To find the midpoint between each

FIG. 6. Final track boundaries. The raw output of the algorithm was
smoothed by fitting with the Gaussian function of Eq. (1).

track, data in this region were first smoothed using the Matlab
Curve Fitting Toolbox “smooth” function with the “loess”
option. The midpoint was then identified by finding the local
minimum (zero crossing of the first derivative) in the smoothed
data. The edges of each adjacent track were then defined as
the points where the (unsmoothed) data crossed a threshold
of 1.05 times the pixel value at the midpoint. A threshold of
5% was chosen as it was observed to be consistently above the
noise level of the data in a large training set. This process is
illustrated in Fig. 5.

Because the algorithm depended on the data reaching a
local minimum, it could not be used to find the top and bottom
edges of the two outermost tracks. Instead, the outermost
boundaries of these tracks were estimated at selected wave-
lengths in a series of training images and averaged to provide
an estimate of the track boundaries across the spectrum. Data
were smoothed by fitting each track boundary with a two term

FIG. 7. Crosstalk subtraction. The algorithm identified the highlighted areas
as crosstalk resulting from the overlap of the signal from adjacent tracks.
These areas were subtracted when integrating the total intensity of each track.
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FIG. 8. Algorithm comparison. The spatially resolved spectra after correction for spectrometer transmission and detector response. Each line corresponds to a
different source-detector distance on the probe surface. (a) The spectrum after processing using the algorithm described in this article. (b) The spectrum after
processing with a very basic algorithm that uses straight line track boundaries and does not correct for crosstalk.

Gaussian function, Eq. (1). The model used to smooth the
data was chosen by examining the coefficient of determination
(R2 value) as data in a large training set were fit with various
models. The two-term Gaussian model produced a better fit
to the observed data than a simpler one-term Gaussian. The
“x” value in Eq. (1) is the pixel number, while parameters a1
through c2 are free parameters varied to produce the best fit to
the observed data. The final track boundaries produced by this
algorithm at each wavelength are shown in Fig. 6,

a1e
−
(
x−b1
c1

)2
+ a2e

−
(
x−b2
c2

)2
. (1)

Despite the attempt to minimize crosstalk through the
physical arrangement of the fibre outputs across the CCD,
crosstalk was still present in the data. This can be observed in
the plot of Fig. 5, in which the base signal level between each
adjacent track depends on the tracks’ intensity. The amount
of crosstalk in each track was estimated by finding the line
connecting the data at both boundaries of each track, as illus-
trated in Fig. 7. Final reflectance values were obtained by
integrating across each track and subtracting the crosstalk.
Applying this method at each wavelength collected by the
spectrometer provided a final spectrum for each distance on
the fibre optic probe head.

III. RESULTS

A comparison between the image processing algorithm
described here and a basic approach that uses straight lines
for track boundaries was performed. A liquid phantom con-
taining a lipid emulsion (Intralipid 20%, Fresenius Kabi AG,
Bad Homburg, Germany) diluted to 0.65% was measured,
and the images were processed and corrected for wavelength-
dependent spectrometer transmission and detector response.
The final spatially resolved spectra using each method are
shown in Fig. 8. The data show a clear difference in results,
especially at the outer ends of the spectrum. In fact, the algo-
rithm extends the spectral range of the system since when using
the basic algorithm (straight line boundaries, no crosstalk), the
data for some of the tracks are unusable below 575 nm and
above 925 nm.

IV. CONCLUSION

A technique for recovering spatially resolved spectra from
diffuse reflectance images collected with an imaging spec-
trometer and CCD has been presented. This image processing
routine automatically detects track edges on the raw CCD
images and corrects for distortion introduced by the equip-
ment. Crosstalk due to overlap of distinct spatially resolved
signals is estimated and subtracted from the data. The spectra
produced by this algorithm can be used with a steady state
version of the Monte Carlo fitting routine described by Kienle
and Patterson19 to determine the optical properties of turbid
media.
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