Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
playground:playground [2015/03/19 15:35]
127.0.0.1 external edit
playground:playground [2023/02/01 22:54] (current)
desaia14
Line 1: Line 1:
 ====== PlayGround ====== ====== PlayGround ======
 +<html xmlns:​v="​urn:​schemas-microsoft-com:​vml" ​
 +xmlns:​o="​urn:​schemas-microsoft-com:​office:​office" ​
 +xmlns:​w="​urn:​schemas-microsoft-com:​office:​word" ​
 +xmlns:​dt="​uuid:​C2F41010-65B3-11d1-A29F-00AA00C14882" ​
 +xmlns:​m="​http://​schemas.microsoft.com/​office/​2004/​12/​omml" ​
 +xmlns="​http://​www.w3.org/​TR/​REC-html40"><​head><​meta http-equiv=Content-Type content="​text/​html;​ charset=windows-1252"><​meta name=ProgId content=Word.Document><​meta name=Generator content="​Microsoft Word 15"><​meta name=Originator content="​Microsoft Word 15"><​link rel=File-List href="​Wiki%20Draft%20(1)_files/​filelist.xml"><​link rel=Edit-Time-Data href="​Wiki%20Draft%20(1)_files/​editdata.mso"><​!--[if !mso]><​style> ​
 +v\:* {behavior:​url(#​default#​VML);​} ​
 +o\:* {behavior:​url(#​default#​VML);​} ​
 +w\:* {behavior:​url(#​default#​VML);​} ​
 +.shape {behavior:​url(#​default#​VML);​} ​
 +</​style><​![endif]--><​!--[if gte mso 9]><​xml><​o:​CustomDocumentProperties><​o:​ZOTERO_PREF_1 dt:​dt="​string"><​data data-version="​3"​ zotero-version="​6.0.20"><​session id="​bFb6WQcK"/><​style id="​http://​www.zotero.org/​styles/​vancouver-superscript"​ locale="​en-GB"​ hasBibliography="​1"​ bibliographyStyleHasBeenSet="​0"/><​prefs><​pref name="​fieldType"​ value="​Field"/><​pref na</​o:​ZOTERO_PREF_1><​o:​ZOTERO_PREF_2 dt:​dt="​string">​me="​automaticJournalAbbreviations"​ value="​true"/></​prefs></​data></​o:​ZOTERO_PREF_2><​o:​ContentTypeId dt:​dt="​string">​0x01010065B13F740B157D4F863C7A3FE966D8E7</​o:​ContentTypeId></​o:​CustomDocumentProperties></​xml><​![endif]--><​link rel=dataStoreItem href="​Wiki%20Draft%20(1)_files/​item0001.xml" ​
 +target="​Wiki%20Draft%20(1)_files/​props002.xml"><​link rel=dataStoreItem href="​Wiki%20Draft%20(1)_files/​item0003.xml" ​
 +target="​Wiki%20Draft%20(1)_files/​props004.xml"><​link rel=dataStoreItem href="​Wiki%20Draft%20(1)_files/​item0005.xml" ​
 +target="​Wiki%20Draft%20(1)_files/​props006.xml"><​link rel=themeData href="​Wiki%20Draft%20(1)_files/​themedata.thmx"><​link rel=colorSchemeMapping ​
 +href="​Wiki%20Draft%20(1)_files/​colorschememapping.xml"><​!--[if gte mso 9]><​xml><​w:​WordDocument><​w:​SpellingState>​Clean</​w:​SpellingState><​w:​GrammarState>​Clean</​w:​GrammarState><​w:​TrackMoves>​false</​w:​TrackMoves><​w:​TrackFormatting/><​w:​PunctuationKerning/><​w:​ValidateAgainstSchemas/><​w:​SaveIfXMLInvalid>​false</​w:​SaveIfXMLInvalid><​w:​IgnoreMixedContent>​false</​w:​IgnoreMixedContent><​w:​AlwaysShowPlaceholderText>​false</​w:​AlwaysShowPlaceholderText><​w:​DoNotPromoteQF/><​w:​LidThemeOther>​EN-CA</​w:​LidThemeOther><​w:​LidThemeAsian>​X-NONE</​w:​LidThemeAsian><​w:​LidThemeComplexScript>​X-NONE</​w:​LidThemeComplexScript><​w:​Compatibility><​w:​BreakWrappedTables/><​w:​SnapToGridInCell/><​w:​WrapTextWithPunct/><​w:​UseAsianBreakRules/><​w:​DontGrowAutofit/><​w:​SplitPgBreakAndParaMark/><​w:​EnableOpenTypeKerning/><​w:​DontFlipMirrorIndents/><​w:​OverrideTableStyleHps/></​w:​Compatibility><​w:​DoNotOptimizeForBrowser/><​m:​mathPr><​m:​mathFont m:​val="​Cambria Math"/><​m:​brkBin m:​val="​before"/><​m:​brkBinSub m:​val="​--"/><​m:​smallFrac m:​val="​off"/><​m:​dispDef/><​m:​lMargin m:​val="​0"/><​m:​rMargin m:​val="​0"/><​m:​defJc m:​val="​centerGroup"/><​m:​wrapIndent m:​val="​1440"/><​m:​intLim m:​val="​subSup"/><​m:​naryLim m:​val="​undOvr"/></​m:​mathPr></​w:​WordDocument></​xml><​![endif]--><​!--[if gte mso 9]><​xml><​w:​LatentStyles DefLockedState="​false"​ DefUnhideWhenUsed="​false" ​
 +DefSemiHidden="​false"​ DefQFormat="​false"​ DefPriority="​99" ​
 +LatentStyleCount="​376"><​w:​LsdException Locked="​false"​ Priority="​0"​ QFormat="​true"​ Name="​Normal"/><​w:​LsdException Locked="​false"​ Priority="​9"​ QFormat="​true"​ Name="​heading 1"/><​w:​LsdException Locked="​false"​ Priority="​9"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ QFormat="​true"​ Name="​heading 2"/><​w:​LsdException Locked="​false"​ Priority="​9"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ QFormat="​true"​ Name="​heading 3"/><​w:​LsdException Locked="​false"​ Priority="​9"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ QFormat="​true"​ Name="​heading 4"/><​w:​LsdException Locked="​false"​ Priority="​9"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ QFormat="​true"​ Name="​heading 5"/><​w:​LsdException Locked="​false"​ Priority="​9"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ QFormat="​true"​ Name="​heading 6"/><​w:​LsdException Locked="​false"​ Priority="​9"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ QFormat="​true"​ Name="​heading 7"/><​w:​LsdException Locked="​false"​ Priority="​9"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ QFormat="​true"​ Name="​heading 8"/><​w:​LsdException Locked="​false"​ Priority="​9"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ QFormat="​true"​ Name="​heading 9"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​index 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​index 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​index 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​index 4"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​index 5"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​index 6"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​index 7"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​index 8"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​index 9"/><​w:​LsdException Locked="​false"​ Priority="​39"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​toc 1"/><​w:​LsdException Locked="​false"​ Priority="​39"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​toc 2"/><​w:​LsdException Locked="​false"​ Priority="​39"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​toc 3"/><​w:​LsdException Locked="​false"​ Priority="​39"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​toc 4"/><​w:​LsdException Locked="​false"​ Priority="​39"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​toc 5"/><​w:​LsdException Locked="​false"​ Priority="​39"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​toc 6"/><​w:​LsdException Locked="​false"​ Priority="​39"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​toc 7"/><​w:​LsdException Locked="​false"​ Priority="​39"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​toc 8"/><​w:​LsdException Locked="​false"​ Priority="​39"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​toc 9"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Normal Indent"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​footnote text"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​annotation text"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​header"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​footer"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​index heading"/><​w:​LsdException Locked="​false"​ Priority="​35"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ QFormat="​true"​ Name="​caption"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​table of figures"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​envelope address"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​envelope return"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​footnote reference"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​annotation reference"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​line number"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​page number"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​endnote reference"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​endnote text"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​table of authorities"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​macro"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​toa heading"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Bullet"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Number"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List 4"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List 5"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Bullet 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Bullet 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Bullet 4"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Bullet 5"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Number 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Number 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Number 4"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Number 5"/><​w:​LsdException Locked="​false"​ Priority="​10"​ QFormat="​true"​ Name="​Title"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Closing"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Signature"/><​w:​LsdException Locked="​false"​ Priority="​1"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​Default Paragraph Font"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Body Text"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Body Text Indent"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Continue"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Continue 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Continue 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Continue 4"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​List Continue 5"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Message Header"/><​w:​LsdException Locked="​false"​ Priority="​11"​ QFormat="​true"​ Name="​Subtitle"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Salutation"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Date"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Body Text First Indent"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Body Text First Indent 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Note Heading"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Body Text 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Body Text 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Body Text Indent 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Body Text Indent 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Block Text"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Hyperlink"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​FollowedHyperlink"/><​w:​LsdException Locked="​false"​ Priority="​22"​ QFormat="​true"​ Name="​Strong"/><​w:​LsdException Locked="​false"​ Priority="​20"​ QFormat="​true"​ Name="​Emphasis"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Document Map"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Plain Text"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​E-mail Signature"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Top of Form"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Bottom of Form"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Normal (Web)"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Acronym"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Address"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Cite"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Code"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Definition"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Keyboard"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Preformatted"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Sample"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Typewriter"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​HTML Variable"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Normal Table"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​annotation subject"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​No List"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Outline List 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Outline List 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Outline List 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Simple 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Simple 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Simple 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Classic 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Classic 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Classic 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Classic 4"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Colorful 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Colorful 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Colorful 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Columns 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Columns 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Columns 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Columns 4"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Columns 5"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Grid 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Grid 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Grid 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Grid 4"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Grid 5"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Grid 6"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Grid 7"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Grid 8"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table List 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table List 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table List 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table List 4"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table List 5"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table List 6"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table List 7"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table List 8"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table 3D effects 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table 3D effects 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table 3D effects 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Contemporary"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Elegant"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Professional"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Subtle 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Subtle 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Web 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Web 2"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Web 3"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Balloon Text"/><​w:​LsdException Locked="​false"​ Priority="​39"​ Name="​Table Grid"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Table Theme"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ Name="​Placeholder Text"/><​w:​LsdException Locked="​false"​ Priority="​1"​ QFormat="​true"​ Name="​No Spacing"/><​w:​LsdException Locked="​false"​ Priority="​60"​ Name="​Light Shading"/><​w:​LsdException Locked="​false"​ Priority="​61"​ Name="​Light List"/><​w:​LsdException Locked="​false"​ Priority="​62"​ Name="​Light Grid"/><​w:​LsdException Locked="​false"​ Priority="​63"​ Name="​Medium Shading 1"/><​w:​LsdException Locked="​false"​ Priority="​64"​ Name="​Medium Shading 2"/><​w:​LsdException Locked="​false"​ Priority="​65"​ Name="​Medium List 1"/><​w:​LsdException Locked="​false"​ Priority="​66"​ Name="​Medium List 2"/><​w:​LsdException Locked="​false"​ Priority="​67"​ Name="​Medium Grid 1"/><​w:​LsdException Locked="​false"​ Priority="​68"​ Name="​Medium Grid 2"/><​w:​LsdException Locked="​false"​ Priority="​69"​ Name="​Medium Grid 3"/><​w:​LsdException Locked="​false"​ Priority="​70"​ Name="​Dark List"/><​w:​LsdException Locked="​false"​ Priority="​71"​ Name="​Colorful Shading"/><​w:​LsdException Locked="​false"​ Priority="​72"​ Name="​Colorful List"/><​w:​LsdException Locked="​false"​ Priority="​73"​ Name="​Colorful Grid"/><​w:​LsdException Locked="​false"​ Priority="​60"​ Name="​Light Shading Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​61"​ Name="​Light List Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​62"​ Name="​Light Grid Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​63"​ Name="​Medium Shading 1 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​64"​ Name="​Medium Shading 2 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​65"​ Name="​Medium List 1 Accent 1"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ Name="​Revision"/><​w:​LsdException Locked="​false"​ Priority="​34"​ QFormat="​true" ​
 +Name="​List Paragraph"/><​w:​LsdException Locked="​false"​ Priority="​29"​ QFormat="​true"​ Name="​Quote"/><​w:​LsdException Locked="​false"​ Priority="​30"​ QFormat="​true" ​
 +Name="​Intense Quote"/><​w:​LsdException Locked="​false"​ Priority="​66"​ Name="​Medium List 2 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​67"​ Name="​Medium Grid 1 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​68"​ Name="​Medium Grid 2 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​69"​ Name="​Medium Grid 3 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​70"​ Name="​Dark List Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​71"​ Name="​Colorful Shading Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​72"​ Name="​Colorful List Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​73"​ Name="​Colorful Grid Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​60"​ Name="​Light Shading Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​61"​ Name="​Light List Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​62"​ Name="​Light Grid Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​63"​ Name="​Medium Shading 1 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​64"​ Name="​Medium Shading 2 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​65"​ Name="​Medium List 1 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​66"​ Name="​Medium List 2 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​67"​ Name="​Medium Grid 1 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​68"​ Name="​Medium Grid 2 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​69"​ Name="​Medium Grid 3 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​70"​ Name="​Dark List Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​71"​ Name="​Colorful Shading Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​72"​ Name="​Colorful List Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​73"​ Name="​Colorful Grid Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​60"​ Name="​Light Shading Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​61"​ Name="​Light List Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​62"​ Name="​Light Grid Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​63"​ Name="​Medium Shading 1 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​64"​ Name="​Medium Shading 2 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​65"​ Name="​Medium List 1 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​66"​ Name="​Medium List 2 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​67"​ Name="​Medium Grid 1 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​68"​ Name="​Medium Grid 2 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​69"​ Name="​Medium Grid 3 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​70"​ Name="​Dark List Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​71"​ Name="​Colorful Shading Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​72"​ Name="​Colorful List Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​73"​ Name="​Colorful Grid Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​60"​ Name="​Light Shading Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​61"​ Name="​Light List Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​62"​ Name="​Light Grid Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​63"​ Name="​Medium Shading 1 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​64"​ Name="​Medium Shading 2 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​65"​ Name="​Medium List 1 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​66"​ Name="​Medium List 2 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​67"​ Name="​Medium Grid 1 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​68"​ Name="​Medium Grid 2 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​69"​ Name="​Medium Grid 3 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​70"​ Name="​Dark List Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​71"​ Name="​Colorful Shading Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​72"​ Name="​Colorful List Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​73"​ Name="​Colorful Grid Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​60"​ Name="​Light Shading Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​61"​ Name="​Light List Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​62"​ Name="​Light Grid Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​63"​ Name="​Medium Shading 1 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​64"​ Name="​Medium Shading 2 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​65"​ Name="​Medium List 1 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​66"​ Name="​Medium List 2 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​67"​ Name="​Medium Grid 1 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​68"​ Name="​Medium Grid 2 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​69"​ Name="​Medium Grid 3 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​70"​ Name="​Dark List Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​71"​ Name="​Colorful Shading Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​72"​ Name="​Colorful List Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​73"​ Name="​Colorful Grid Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​60"​ Name="​Light Shading Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​61"​ Name="​Light List Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​62"​ Name="​Light Grid Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​63"​ Name="​Medium Shading 1 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​64"​ Name="​Medium Shading 2 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​65"​ Name="​Medium List 1 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​66"​ Name="​Medium List 2 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​67"​ Name="​Medium Grid 1 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​68"​ Name="​Medium Grid 2 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​69"​ Name="​Medium Grid 3 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​70"​ Name="​Dark List Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​71"​ Name="​Colorful Shading Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​72"​ Name="​Colorful List Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​73"​ Name="​Colorful Grid Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​19"​ QFormat="​true" ​
 +Name="​Subtle Emphasis"/><​w:​LsdException Locked="​false"​ Priority="​21"​ QFormat="​true" ​
 +Name="​Intense Emphasis"/><​w:​LsdException Locked="​false"​ Priority="​31"​ QFormat="​true" ​
 +Name="​Subtle Reference"/><​w:​LsdException Locked="​false"​ Priority="​32"​ QFormat="​true" ​
 +Name="​Intense Reference"/><​w:​LsdException Locked="​false"​ Priority="​33"​ QFormat="​true"​ Name="​Book Title"/><​w:​LsdException Locked="​false"​ Priority="​37"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ Name="​Bibliography"/><​w:​LsdException Locked="​false"​ Priority="​39"​ SemiHidden="​true" ​
 +UnhideWhenUsed="​true"​ QFormat="​true"​ Name="​TOC Heading"/><​w:​LsdException Locked="​false"​ Priority="​41"​ Name="​Plain Table 1"/><​w:​LsdException Locked="​false"​ Priority="​42"​ Name="​Plain Table 2"/><​w:​LsdException Locked="​false"​ Priority="​43"​ Name="​Plain Table 3"/><​w:​LsdException Locked="​false"​ Priority="​44"​ Name="​Plain Table 4"/><​w:​LsdException Locked="​false"​ Priority="​45"​ Name="​Plain Table 5"/><​w:​LsdException Locked="​false"​ Priority="​40"​ Name="​Grid Table Light"/><​w:​LsdException Locked="​false"​ Priority="​46"​ Name="​Grid Table 1 Light"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​Grid Table 2"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​Grid Table 3"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​Grid Table 4"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​Grid Table 5 Dark"/><​w:​LsdException Locked="​false"​ Priority="​51"​ Name="​Grid Table 6 Colorful"/><​w:​LsdException Locked="​false"​ Priority="​52"​ Name="​Grid Table 7 Colorful"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​Grid Table 1 Light Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​Grid Table 2 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​Grid Table 3 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​Grid Table 4 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​Grid Table 5 Dark Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​Grid Table 6 Colorful Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​Grid Table 7 Colorful Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​Grid Table 1 Light Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​Grid Table 2 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​Grid Table 3 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​Grid Table 4 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​Grid Table 5 Dark Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​Grid Table 6 Colorful Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​Grid Table 7 Colorful Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​Grid Table 1 Light Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​Grid Table 2 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​Grid Table 3 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​Grid Table 4 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​Grid Table 5 Dark Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​Grid Table 6 Colorful Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​Grid Table 7 Colorful Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​Grid Table 1 Light Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​Grid Table 2 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​Grid Table 3 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​Grid Table 4 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​Grid Table 5 Dark Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​Grid Table 6 Colorful Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​Grid Table 7 Colorful Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​Grid Table 1 Light Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​Grid Table 2 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​Grid Table 3 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​Grid Table 4 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​Grid Table 5 Dark Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​Grid Table 6 Colorful Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​Grid Table 7 Colorful Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​Grid Table 1 Light Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​Grid Table 2 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​Grid Table 3 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​Grid Table 4 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​Grid Table 5 Dark Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​Grid Table 6 Colorful Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​Grid Table 7 Colorful Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​46"​ Name="​List Table 1 Light"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​List Table 2"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​List Table 3"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​List Table 4"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​List Table 5 Dark"/><​w:​LsdException Locked="​false"​ Priority="​51"​ Name="​List Table 6 Colorful"/><​w:​LsdException Locked="​false"​ Priority="​52"​ Name="​List Table 7 Colorful"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​List Table 1 Light Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​List Table 2 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​List Table 3 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​List Table 4 Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​List Table 5 Dark Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​List Table 6 Colorful Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​List Table 7 Colorful Accent 1"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​List Table 1 Light Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​List Table 2 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​List Table 3 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​List Table 4 Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​List Table 5 Dark Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​List Table 6 Colorful Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​List Table 7 Colorful Accent 2"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​List Table 1 Light Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​List Table 2 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​List Table 3 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​List Table 4 Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​List Table 5 Dark Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​List Table 6 Colorful Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​List Table 7 Colorful Accent 3"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​List Table 1 Light Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​List Table 2 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​List Table 3 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​List Table 4 Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​List Table 5 Dark Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​List Table 6 Colorful Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​List Table 7 Colorful Accent 4"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​List Table 1 Light Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​List Table 2 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​List Table 3 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​List Table 4 Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​List Table 5 Dark Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​List Table 6 Colorful Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​List Table 7 Colorful Accent 5"/><​w:​LsdException Locked="​false"​ Priority="​46" ​
 +Name="​List Table 1 Light Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​47"​ Name="​List Table 2 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​48"​ Name="​List Table 3 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​49"​ Name="​List Table 4 Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​50"​ Name="​List Table 5 Dark Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​51" ​
 +Name="​List Table 6 Colorful Accent 6"/><​w:​LsdException Locked="​false"​ Priority="​52" ​
 +Name="​List Table 7 Colorful Accent 6"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Mention"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Smart Hyperlink"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Hashtag"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Unresolved Mention"/><​w:​LsdException Locked="​false"​ SemiHidden="​true"​ UnhideWhenUsed="​true" ​
 +Name="​Smart Link"/></​w:​LatentStyles></​xml><​![endif]--><​style><​!-- ​
 +/* Font Definitions */ 
 +@font-face ​
 + {font-family:"​Cambria Math"; ​
 + panose-1:2 4 5 3 5 4 6 3 2 4; 
 + mso-font-charset:​0; ​
 + mso-generic-font-family:​roman; ​
 + mso-font-pitch:​variable; ​
 + mso-font-signature:​-536869121 1107305727 33554432 0 415 0;} 
 +/* Style Definitions */ 
 +p.MsoNormal,​ li.MsoNormal,​ div.MsoNormal ​
 + {mso-style-unhide:​no; ​
 + mso-style-qformat:​yes; ​
 + mso-style-parent:""; ​
 + margin:​0cm; ​
 + line-height:​115%; ​
 + mso-pagination:​widow-orphan; ​
 + font-size:​11.0pt; ​
 + font-family:"​Arial",​sans-serif; ​
 + mso-fareast-font-family:​Arial; ​
 + mso-ansi-language:​EN;​} ​
 +h1 
 + {mso-style-priority:​9; ​
 + mso-style-unhide:​no; ​
 + mso-style-qformat:​yes; ​
 + mso-style-next:​Normal; ​
 + margin-top:​20.0pt; ​
 + margin-right:​0cm; ​
 + margin-bottom:​6.0pt; ​
 + margin-left:​0cm; ​
 + line-height:​115%; ​
 + mso-pagination:​widow-orphan lines-together; ​
 + page-break-after:​avoid; ​
 + mso-outline-level:​1; ​
 + font-size:​20.0pt; ​
 + font-family:"​Arial",​sans-serif; ​
 + mso-font-kerning:​0pt; ​
 + mso-ansi-language:​EN; ​
 + font-weight:​normal;​} ​
 +h2 
 + {mso-style-noshow:​yes; ​
 + mso-style-priority:​9; ​
 + mso-style-qformat:​yes; ​
 + mso-style-next:​Normal; ​
 + margin-top:​18.0pt; ​
 + margin-right:​0cm; ​
 + margin-bottom:​6.0pt; ​
 + margin-left:​0cm; ​
 + line-height:​115%; ​
 + mso-pagination:​widow-orphan lines-together; ​
 + page-break-after:​avoid; ​
 + mso-outline-level:​2; ​
 + font-size:​16.0pt; ​
 + font-family:"​Arial",​sans-serif; ​
 + mso-ansi-language:​EN; ​
 + font-weight:​normal;​} ​
 +h3 
 + {mso-style-noshow:​yes; ​
 + mso-style-priority:​9; ​
 + mso-style-qformat:​yes; ​
 + mso-style-next:​Normal; ​
 + margin-top:​16.0pt; ​
 + margin-right:​0cm; ​
 + margin-bottom:​4.0pt; ​
 + margin-left:​0cm; ​
 + line-height:​115%; ​
 + mso-pagination:​widow-orphan lines-together; ​
 + page-break-after:​avoid; ​
 + mso-outline-level:​3; ​
 + font-size:​14.0pt; ​
 + font-family:"​Arial",​sans-serif; ​
 + color:#​434343; ​
 + mso-ansi-language:​EN; ​
 + font-weight:​normal;​} ​
 +h4 
 + {mso-style-noshow:​yes; ​
 + mso-style-priority:​9; ​
 + mso-style-qformat:​yes; ​
 + mso-style-next:​Normal; ​
 + margin-top:​14.0pt; ​
 + margin-right:​0cm; ​
 + margin-bottom:​4.0pt; ​
 + margin-left:​0cm; ​
 + line-height:​115%; ​
 + mso-pagination:​widow-orphan lines-together; ​
 + page-break-after:​avoid; ​
 + mso-outline-level:​4; ​
 + font-size:​12.0pt; ​
 + font-family:"​Arial",​sans-serif; ​
 + color:#​666666; ​
 + mso-ansi-language:​EN; ​
 + font-weight:​normal;​} ​
 +h5 
 + {mso-style-noshow:​yes; ​
 + mso-style-priority:​9; ​
 + mso-style-qformat:​yes; ​
 + mso-style-next:​Normal; ​
 + margin-top:​12.0pt; ​
 + margin-right:​0cm; ​
 + margin-bottom:​4.0pt; ​
 + margin-left:​0cm; ​
 + line-height:​115%; ​
 + mso-pagination:​widow-orphan lines-together; ​
 + page-break-after:​avoid; ​
 + mso-outline-level:​5; ​
 + font-size:​11.0pt; ​
 + font-family:"​Arial",​sans-serif; ​
 + color:#​666666; ​
 + mso-ansi-language:​EN; ​
 + font-weight:​normal;​} ​
 +h6 
 + {mso-style-noshow:​yes; ​
 + mso-style-priority:​9; ​
 + mso-style-qformat:​yes; ​
 + mso-style-next:​Normal; ​
 + margin-top:​12.0pt; ​
 + margin-right:​0cm; ​
 + margin-bottom:​4.0pt; ​
 + margin-left:​0cm; ​
 + line-height:​115%; ​
 + mso-pagination:​widow-orphan lines-together; ​
 + page-break-after:​avoid; ​
 + mso-outline-level:​6; ​
 + font-size:​11.0pt; ​
 + font-family:"​Arial",​sans-serif; ​
 + color:#​666666; ​
 + mso-ansi-language:​EN; ​
 + font-weight:​normal; ​
 + font-style:​italic; ​
 + mso-bidi-font-style:​normal;​} ​
 +p.MsoTitle, li.MsoTitle,​ div.MsoTitle ​
 + {mso-style-priority:​10; ​
 + mso-style-unhide:​no; ​
 + mso-style-qformat:​yes; ​
 + mso-style-next:​Normal; ​
 + margin-top:​0cm; ​
 + margin-right:​0cm; ​
 + margin-bottom:​3.0pt; ​
 + margin-left:​0cm; ​
 + line-height:​115%; ​
 + mso-pagination:​widow-orphan lines-together; ​
 + page-break-after:​avoid; ​
 + font-size:​26.0pt; ​
 + font-family:"​Arial",​sans-serif; ​
 + mso-fareast-font-family:​Arial; ​
 + mso-ansi-language:​EN;​} ​
 +p.MsoSubtitle,​ li.MsoSubtitle,​ div.MsoSubtitle ​
 + {mso-style-priority:​11; ​
 + mso-style-unhide:​no; ​
 + mso-style-qformat:​yes; ​
 + mso-style-next:​Normal; ​
 + margin-top:​0cm; ​
 + margin-right:​0cm; ​
 + margin-bottom:​16.0pt; ​
 + margin-left:​0cm; ​
 + line-height:​115%; ​
 + mso-pagination:​widow-orphan lines-together; ​
 + page-break-after:​avoid; ​
 + font-size:​15.0pt; ​
 + font-family:"​Arial",​sans-serif; ​
 + mso-fareast-font-family:​Arial; ​
 + color:#​666666; ​
 + mso-ansi-language:​EN;​} ​
 +span.SpellE ​
 + {mso-style-name:""; ​
 + mso-spl-e:​yes;​} ​
 +span.GramE ​
 + {mso-style-name:""; ​
 + mso-gram-e:​yes;​} ​
 +.MsoChpDefault ​
 + {mso-style-type:​export-only; ​
 + mso-default-props:​yes; ​
 + font-family:"​Arial",​sans-serif; ​
 + mso-ascii-font-family:​Arial; ​
 + mso-fareast-font-family:​Arial; ​
 + mso-hansi-font-family:​Arial; ​
 + mso-bidi-font-family:​Arial; ​
 + mso-ansi-language:​EN;​} ​
 +.MsoPapDefault ​
 + {mso-style-type:​export-only; ​
 + line-height:​115%;​} ​
 +@page WordSection1 ​
 + {size:​612.0pt 792.0pt; ​
 + margin:​72.0pt 72.0pt 72.0pt 72.0pt; ​
 + mso-header-margin:​36.0pt; ​
 + mso-footer-margin:​36.0pt; ​
 + mso-page-numbers:​1; ​
 + mso-paper-source:​0;​} ​
 +div.WordSection1 ​
 + {page:​WordSection1;​} ​
 +/* List Definitions */ 
 +ol 
 + {margin-bottom:​0cm;​} ​
 +ul 
 + {margin-bottom:​0cm;​} ​
 +--></​style><​!--[if gte mso 10]><​style> ​
 +/* Style Definitions */ 
 +table.MsoNormalTable ​
 + {mso-style-name:"​Table Normal"; ​
 + mso-tstyle-rowband-size:​0; ​
 + mso-tstyle-colband-size:​0; ​
 + mso-style-noshow:​yes; ​
 + mso-style-priority:​99; ​
 + mso-style-parent:""; ​
 + mso-padding-alt:​0cm 5.4pt 0cm 5.4pt; ​
 + mso-para-margin:​0cm; ​
 + line-height:​115%; ​
 + mso-pagination:​widow-orphan; ​
 + font-size:​11.0pt; ​
 + font-family:"​Arial",​sans-serif; ​
 + mso-ansi-language:​EN;​} ​
 +</​style><​![endif]--><​!--[if gte mso 9]><​xml><​o:​shapedefaults v:​ext="​edit"​ spidmax="​1026"/></​xml><​![endif]--><​!--[if gte mso 9]><​xml><​o:​shapelayout v:​ext="​edit"><​o:​idmap v:​ext="​edit"​ data="​1"/></​o:​shapelayout></​xml><​![endif]--></​head><​body lang=EN-CA style='​tab-interval:​36.0pt;​word-wrap:​break-word'><​div class=WordSection1><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​Introduction:​ <​o:​p></​o:​p></​span>'''<​p class=MsoNormal style='​margin-bottom:​12.0pt'><​span lang=EN style='​font-size: ​
 +12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​Gram-Negative Bacteria:<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​For ​
 +survival, bacteria have a cell envelope surrounding the cytoplasm that gives 
 +the cell its shape, selectively allows the passage of molecules into and out of 
 +the cytoplasm, and protects the cell</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​iIaRvdN8","​properties":​{"​formattedCitation":"​\\super ​
 +1\\nosupersub{}","​plainCitation":"​1","​noteIndex":​0},"​citationItems":​[{"​id":​614,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​H9G2P5QM"​],"​itemData":​{"​id":​614,"​type":"​article-journal","​abstract":"​The ​
 +bacteria cell envelope is a complex multilayered structure that serves to 
 +protect these organisms from their unpredictable and often hostile environment. ​
 +The cell envelopes of most bacteria fall into one of two major groups. ​
 +Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which 
 +itself is surrounded by an outer membrane containing lipopolysaccharide. ​
 +Gram-positive bacteria lack an outer membrane but are surrounded by layers of 
 +peptidoglycan many times thicker than is found in the Gram-negatives. Threading ​
 +through these layers of peptidoglycan are long anionic polymers, called ​
 +teichoic acids. The composition and organization of these envelope layers and 
 +recent insights into the mechanisms of cell envelope assembly are 
 +discussed.","​container-title":"​Cold Spring Harbor ​
 +Perspectives in Biology","​DOI":"​10.1101/​cshperspect.a000414","​ISSN":", ​
 +1943-0264","​issue":"​5","​journalAbbreviation":"​Cold ​
 +Spring Harb Perspect ​
 +Biol","​language":"​en","​note":"​Company: ​
 +Cold Spring Harbor Laboratory Press\nDistributor:​ Cold Spring Harbor Laboratory ​
 +Press\nInstitution:​ Cold Spring Harbor Laboratory Press\nLabel:​ Cold Spring ​
 +Harbor Laboratory Press\npublisher:​ Cold Spring Harbor Lab\nPMID: ​
 +20452953","​page":"​a000414","​source":"​cshperspectives.cshlp.org","​title":"​The ​
 +Bacterial Cell Envelope","​URL":"​http://​cshperspectives.cshlp.org/​content/​2/​5/​a000414","​volume":"​2","​author":​[{"​family":"​Silhavy","​given":"​Thomas ​
 +J."​},​{"​family":"​Kahne","​given":"​Daniel"​},​{"​family":"​Walker","​given":"​Suzanne"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​1,​5]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​1</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE><​span ​
 +style='​background:​white;​mso-highlight:​white'>​Silhavy</​span></​span><​span ​
 +style='​background:​white;​mso-highlight:​white'>,​ <span class=SpellE>​Kahne</​span>, ​
 +& Walker, 2010). The bacteria fall into two groups, depending on their cell 
 +envelope: Gram-negative bacteria and Gram-positive bacteria. <i 
 +style='​mso-bidi-font-style:​normal'>​E. coli''​ is an example of a Gram-negative ​
 +bacteria</​span></​span><​!--[if supportFields]><​span lang=EN style='​font-size: ​
 +12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman";​background:​white;​mso-highlight:​white'><​span style='​mso-element: ​
 +field-begin'></​span>​ ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​CJIH8jEe","​properties":​{"​formattedCitation":"​\\super ​
 +1\\nosupersub{}","​plainCitation":"​1","​noteIndex":​0},"​citationItems":​[{"​id":​614,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​H9G2P5QM"​],"​itemData":​{"​id":​614,"​type":"​article-journal","​abstract":"​The ​
 +bacteria cell envelope is a complex multilayered structure that serves to 
 +protect these organisms from their unpredictable and often hostile environment. ​
 +The cell envelopes of most bacteria fall into one of two major groups. ​
 +Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which 
 +itself is surrounded by an outer membrane containing lipopolysaccharide. ​
 +Gram-positive bacteria lack an outer membrane but are surrounded by layers of 
 +peptidoglycan many times thicker than is found in the Gram-negatives. Threading ​
 +through these layers of peptidoglycan are long anionic polymers, called ​
 +teichoic acids. The composition and organization of these envelope layers and 
 +recent insights into the mechanisms of cell envelope assembly are 
 +discussed.","​container-title":"​Cold Spring Harbor ​
 +Perspectives in 
 +Biology","​DOI":"​10.1101/​cshperspect.a000414","​ISSN":", ​
 +1943-0264","​issue":"​5","​journalAbbreviation":"​Cold ​
 +Spring Harb Perspect ​
 +Biol","​language":"​en","​note":"​Company: ​
 +Cold Spring Harbor Laboratory Press\nDistributor:​ Cold Spring Harbor Laboratory ​
 +Press\nInstitution:​ Cold Spring Harbor Laboratory Press\nLabel:​ Cold Spring ​
 +Harbor Laboratory Press\npublisher:​ Cold Spring Harbor Lab\nPMID: ​
 +20452953","​page":"​a000414","​source":"​cshperspectives.cshlp.org","​title":"​The ​
 +Bacterial Cell 
 +Envelope","​URL":"​http://​cshperspectives.cshlp.org/​content/​2/​5/​a000414","​volume":"​2","​author":​[{"​family":"​Silhavy","​given":"​Thomas ​
 +J."​},​{"​family":"​Kahne","​given":"​Daniel"​},​{"​family":"​Walker","​given":"​Suzanne"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​1,​5]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​1</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-end'></​span></​span><​![endif]--><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'> ​
 +(<span class=SpellE>​Silhavy</​span>,​ <span class=SpellE>​Kahne</​span>,​ & 
 +Walker, 2010).<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​i style='​mso-bidi-font-style:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'>​E. ​
 +coli</​span>''<​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +background:​white;​mso-highlight:​white'>​’s cell envelope, shown in figure X, 
 +consists of an inner membrane (IM), a peptidoglycan cell wall, and an outer 
 +membrane (OM) which is unique to Gram-negative bacteria</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-begin'></​span>​ ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​k70Th6wE","​properties":​{"​formattedCitation":"​\\super ​
 +1\\nosupersub{}","​plainCitation":"​1","​noteIndex":​0},"​citationItems":​[{"​id":​614,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​H9G2P5QM"​],"​itemData":​{"​id":​614,"​type":"​article-journal","​abstract":"​The ​
 +bacteria cell envelope is a complex multilayered structure that serves to 
 +protect these organisms from their unpredictable and often hostile environment. ​
 +The cell envelopes of most bacteria fall into one of two major groups. ​
 +Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which 
 +itself is surrounded by an outer membrane containing lipopolysaccharide. ​
 +Gram-positive bacteria lack an outer membrane but are surrounded by layers of 
 +peptidoglycan many times thicker than is found in the Gram-negatives. Threading ​
 +through these layers of peptidoglycan are long anionic polymers, called ​
 +teichoic acids. The composition and organization of these envelope layers and 
 +recent insights into the mechanisms of cell envelope assembly are 
 +discussed.","​container-title":"​Cold Spring Harbor ​
 +Perspectives in 
 +Biology","​DOI":"​10.1101/​cshperspect.a000414","​ISSN":", ​
 +1943-0264","​issue":"​5","​journalAbbreviation":"​Cold ​
 +Spring Harb Perspect ​
 +Biol","​language":"​en","​note":"​Company: ​
 +Cold Spring Harbor Laboratory Press\nDistributor:​ Cold Spring Harbor Laboratory ​
 +Press\nInstitution:​ Cold Spring Harbor Laboratory Press\nLabel:​ Cold Spring ​
 +Harbor Laboratory Press\npublisher:​ Cold Spring Harbor Lab\nPMID: ​
 +20452953","​page":"​a000414","​source":"​cshperspectives.cshlp.org","​title":"​The ​
 +Bacterial Cell 
 +Envelope","​URL":"​http://​cshperspectives.cshlp.org/​content/​2/​5/​a000414","​volume":"​2","​author":​[{"​family":"​Silhavy","​given":"​Thomas ​
 +J."​},​{"​family":"​Kahne","​given":"​Daniel"​},​{"​family":"​Walker","​given":"​Suzanne"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​1,​5]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​1</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-end'></​span></​span><​![endif]--><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'> ​
 +(<span class=SpellE>​Silhavy</​span>,​ <span class=SpellE>​Kahne</​span>,​ & 
 +Walker, 2010). The IM is a phospholipid (PL) bilayer</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-begin'></​span>​ ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​B661XGj7","​properties":​{"​formattedCitation":"​\\super ​
 +2\\nosupersub{}","​plainCitation":"​2","​noteIndex":​0},"​citationItems":​[{"​id":​617,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​FDC6F69M"​],"​itemData":​{"​id":​617,"​type":"​article-journal","​abstract":"​PbgA ​
 +proteins controls lipopolysaccharide synthesis in Escherichia ​
 +coli.","​container-title":"​Nature","​DOI":"​10.1038/​d41586-020-02256-x","​issue":"​7821","​language":"​en","​license":"​2021 ​
 +Nature","​note":"​Bandiera_abtest:​ a\nCg_type: News And 
 +Views\nnumber:​ 7821\npublisher:​ Nature Publishing Group\nSubject_term: ​
 +Structural biology, ​
 +Microbiology","​page":"​348-349","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of a lipopolysaccharide regulator reveals a road to new 
 +antibiotics","​URL":"​http://​www.nature.com/​articles/​d41586-020-02256-x","​volume":"​584","​author":​[{"​family":"​Bishop","​given":"​Russell ​
 +E."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​2</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-end'></​span></​span><​![endif]--><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'> ​
 +(Bishop, 2020). Proteins responsible for energy production, lipid biosynthesis, ​
 +protein secretion, and transport are located in the IM due to a lack of 
 +intracellular organelles</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-begin'></​span>​ ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​mcVZ8LiH","​properties":​{"​formattedCitation":"​\\super ​
 +1,​2\\nosupersub{}","​plainCitation":"​1,​2","​noteIndex":​0},"​citationItems":​[{"​id":​614,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​H9G2P5QM"​],"​itemData":​{"​id":​614,"​type":"​article-journal","​abstract":"​The ​
 +bacteria cell envelope is a complex multilayered structure that serves to protect ​
 +these organisms from their unpredictable and often hostile environment. The 
 +cell envelopes of most bacteria fall into one of two major groups. ​
 +Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which 
 +itself is surrounded by an outer membrane containing lipopolysaccharide. ​
 +Gram-positive bacteria lack an outer membrane but are surrounded by layers of 
 +peptidoglycan many times thicker than is found in the Gram-negatives. Threading ​
 +through these layers of peptidoglycan are long anionic polymers, called ​
 +teichoic acids. The composition and organization of these envelope layers and 
 +recent insights into the mechanisms of cell envelope assembly are 
 +discussed.","​container-title":"​Cold Spring Harbor ​
 +Perspectives in Biology","​DOI":"​10.1101/​cshperspect.a000414","​ISSN":", ​
 +1943-0264","​issue":"​5","​journalAbbreviation":"​Cold ​
 +Spring Harb Perspect ​
 +Biol","​language":"​en","​note":"​Company: ​
 +Cold Spring Harbor Laboratory Press\nDistributor:​ Cold Spring Harbor Laboratory ​
 +Press\nInstitution:​ Cold Spring Harbor Laboratory Press\nLabel:​ Cold Spring ​
 +Harbor Laboratory Press\npublisher:​ Cold Spring Harbor Lab\nPMID: ​
 +20452953","​page":"​a000414","​source":"​cshperspectives.cshlp.org","​title":"​The ​
 +Bacterial Cell 
 +Envelope","​URL":"​http://​cshperspectives.cshlp.org/​content/​2/​5/​a000414","​volume":"​2","​author":​[{"​family":"​Silhavy","​given":"​Thomas ​
 +J."​},​{"​family":"​Kahne","​given":"​Daniel"​},​{"​family":"​Walker","​given":"​Suzanne"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​1,​5]]}}},​{"​id":​617,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​FDC6F69M"​],"​itemData":​{"​id":​617,"​type":"​article-journal","​abstract":"​PbgA ​
 +proteins controls lipopolysaccharide synthesis in Escherichia ​
 +coli.","​container-title":"​Nature","​DOI":"​10.1038/​d41586-020-02256-x","​issue":"​7821","​language":"​en","​license":"​2021 ​
 +Nature","​note":"​Bandiera_abtest:​ a\nCg_type: News And 
 +Views\nnumber:​ 7821\npublisher:​ Nature Publishing Group\nSubject_term: ​
 +Structural biology, Microbiology","​page":"​348-349","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of a lipopolysaccharide regulator reveals a road to new 
 +antibiotics","​URL":"​http://​www.nature.com/​articles/​d41586-020-02256-x","​volume":"​584","​author":​[{"​family":"​Bishop","​given":"​Russell ​
 +E."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​1,​2</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-end'></​span></​span><​![endif]--><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'> ​
 +(Bishop, 2020; <span class=SpellE>​Silhavy</​span>,​ <span class=SpellE>​Kahne</​span>, ​
 +& Walker, 2010). The peptidoglycan cell wall, found in the periplasmic ​
 +space between the IM and OM, is made up of repeating units of the disaccharide ​
 +N-acetyl glucosamine-N-acetyl muramic acid (NAG-NAM), cross-linked by 
 +pentapeptide side chains</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-begin'></​span>​ ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​jhF990s7","​properties":​{"​formattedCitation":"​\\super ​
 +1,​3\\nosupersub{}","​plainCitation":"​1,​3","​noteIndex":​0},"​citationItems":​[{"​id":​614,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​H9G2P5QM"​],"​itemData":​{"​id":​614,"​type":"​article-journal","​abstract":"​The ​
 +bacteria cell envelope is a complex multilayered structure that serves to 
 +protect these organisms from their unpredictable and often hostile environment. ​
 +The cell envelopes of most bacteria fall into one of two major groups. ​
 +Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which 
 +itself is surrounded by an outer membrane containing lipopolysaccharide. ​
 +Gram-positive bacteria lack an outer membrane but are surrounded by layers of 
 +peptidoglycan many times thicker than is found in the Gram-negatives. Threading ​
 +through these layers of peptidoglycan are long anionic polymers, called ​
 +teichoic acids. The composition and organization of these envelope layers and 
 +recent insights into the mechanisms of cell envelope assembly are 
 +discussed.","​container-title":"​Cold Spring Harbor ​
 +Perspectives in 
 +Biology","​DOI":"​10.1101/​cshperspect.a000414","​ISSN":", ​
 +1943-0264","​issue":"​5","​journalAbbreviation":"​Cold ​
 +Spring Harb Perspect ​
 +Biol","​language":"​en","​note":"​Company: ​
 +Cold Spring Harbor Laboratory Press\nDistributor:​ Cold Spring Harbor Laboratory ​
 +Press\nInstitution:​ Cold Spring Harbor Laboratory Press\nLabel:​ Cold Spring ​
 +Harbor Laboratory Press\npublisher:​ Cold Spring Harbor Lab\nPMID: ​
 +20452953","​page":"​a000414","​source":"​cshperspectives.cshlp.org","​title":"​The ​
 +Bacterial Cell 
 +Envelope","​URL":"​http://​cshperspectives.cshlp.org/​content/​2/​5/​a000414","​volume":"​2","​author":​[{"​family":"​Silhavy","​given":"​Thomas ​
 +J."​},​{"​family":"​Kahne","​given":"​Daniel"​},​{"​family":"​Walker","​given":"​Suzanne"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​1,​5]]}}},​{"​id":​619,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​HWCQ9FUI"​],"​itemData":​{"​id":​619,"​type":"​article-journal","​abstract":"​Gram-negative ​
 +bacteria are surrounded by a complex cell envelope that includes two membranes. ​
 +The outer membrane prevents many drugs from entering these cells and is thus a 
 +major determinant of their intrinsic antibiotic resistance. This barrier ​
 +function is imparted by the asymmetric architecture of the membrane with 
 +lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner 
 +leaflet. The LPS and phospholipid synthesis pathways share an intermediate. ​
 +Proper membrane biogenesis therefore requires that the flux through each 
 +pathway be balanced. In Escherichia coli, a major control point in establishing ​
 +this balance is the committed step of LPS synthesis mediated by LpxC. Levels of 
 +this enzyme are controlled through its degradation by the inner membrane ​
 +protease FtsH and its presumed adapter protein LapB (YciM). How turnover of 
 +LpxC is controlled has remained unclear for many years. Here, we demonstrate ​
 +that the essential protein of unknown function YejM (PbgA) participates in this 
 +regulatory pathway. Suppressors of YejM essentiality were identified in lpxC 
 +and lapB, and LpxC overproduction was shown to be sufficient to allow survival ​
 +of ΔyejM mutants. Furthermore,​ the stability of LpxC was shown to be 
 +reduced in cells lacking YejM, and genetic and physical interactions between ​
 +LapB and YejM were detected. Taken together, our results are consistent with a 
 +model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate ​
 +LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane ​
 +is a major determinant of the intrinsic antibiotic resistance of Gram-negative ​
 +bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid,​ and 
 +the synthesis of these lipid species must be balanced for the membrane to 
 +maintain its barrier function in blocking drug entry. In this study, we 
 +identified an essential protein of unknown function as a key new factor in 
 +modulating LPS synthesis in the model bacterium Escherichia coli. Our results ​
 +provide novel insight into how this organism and most likely other 
 +Gram-negative bacteria maintain membrane homeostasis and their intrinsic ​
 +resistance to 
 +antibiotics.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.00939-20","​issue":"​3","​note":"​publisher: ​
 +American Society for Microbiology","​page":"​e00939-20","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​An Essential Membrane Protein Modulates ​
 +the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia ​
 +coli","​URL":"​https://​journals.asm.org/​doi/​10.1128/​mBio.00939-20","​volume":"​11","​author":​[{"​family":"​Fivenson","​given":"​Elayne ​
 +M."​},​{"​family":"​Bernhardt","​given":"​Thomas ​
 +G."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​5,​19]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​1,​3</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-end'></​span></​span><​![endif]--><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Fivenson</​span>, ​
 +& Bernhardt, 2020; <span class=SpellE>​Silhavy</​span>,​ <span class=SpellE>​Kahne</​span>, ​
 +& Walker, 2010). This rigid cell wall is responsible for the maintenance of 
 +<i style='​mso-bidi-font-style:​normal'>​E. coli''​’s characteristic rod shape</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​QysnGSot","​properties":​{"​formattedCitation":"​\\super ​
 +1\\nosupersub{}","​plainCitation":"​1","​noteIndex":​0},"​citationItems":​[{"​id":​614,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​H9G2P5QM"​],"​itemData":​{"​id":​614,"​type":"​article-journal","​abstract":"​The ​
 +bacteria cell envelope is a complex multilayered structure that serves to 
 +protect these organisms from their unpredictable and often hostile environment. ​
 +The cell envelopes of most bacteria fall into one of two major groups. ​
 +Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which 
 +itself is surrounded by an outer membrane containing lipopolysaccharide. ​
 +Gram-positive bacteria lack an outer membrane but are surrounded by layers of 
 +peptidoglycan many times thicker than is found in the Gram-negatives. Threading ​
 +through these layers of peptidoglycan are long anionic polymers, called ​
 +teichoic acids. The composition and organization of these envelope layers and 
 +recent insights into the mechanisms of cell envelope assembly are 
 +discussed.","​container-title":"​Cold Spring Harbor ​
 +Perspectives in 
 +Biology","​DOI":"​10.1101/​cshperspect.a000414","​ISSN":", ​
 +1943-0264","​issue":"​5","​journalAbbreviation":"​Cold ​
 +Spring Harb Perspect ​
 +Biol","​language":"​en","​note":"​Company: ​
 +Cold Spring Harbor Laboratory Press\nDistributor:​ Cold Spring Harbor Laboratory ​
 +Press\nInstitution:​ Cold Spring Harbor Laboratory Press\nLabel:​ Cold Spring ​
 +Harbor Laboratory Press\npublisher:​ Cold Spring Harbor Lab\nPMID: ​
 +20452953","​page":"​a000414","​source":"​cshperspectives.cshlp.org","​title":"​The ​
 +Bacterial Cell 
 +Envelope","​URL":"​http://​cshperspectives.cshlp.org/​content/​2/​5/​a000414","​volume":"​2","​author":​[{"​family":"​Silhavy","​given":"​Thomas ​
 +J."​},​{"​family":"​Kahne","​given":"​Daniel"​},​{"​family":"​Walker","​given":"​Suzanne"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​1,​5]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​1</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Silhavy</​span>, ​
 +<span class=SpellE>​Kahne</​span>,​ & Walker, 2010). The peptidoglycan layer 
 +is connected to the OM through a lipoprotein,​ murein/​Braun’s lipoprotein (<​span ​
 +class=SpellE>​Lpp</​span>​)</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​ExJWWN7s","​properties":​{"​formattedCitation":"​\\super ​
 +1\\nosupersub{}","​plainCitation":"​1","​noteIndex":​0},"​citationItems":​[{"​id":​614,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​H9G2P5QM"​],"​itemData":​{"​id":​614,"​type":"​article-journal","​abstract":"​The ​
 +bacteria cell envelope is a complex multilayered structure that serves to 
 +protect these organisms from their unpredictable and often hostile environment. ​
 +The cell envelopes of most bacteria fall into one of two major groups. ​
 +Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which 
 +itself is surrounded by an outer membrane containing lipopolysaccharide. ​
 +Gram-positive bacteria lack an outer membrane but are surrounded by layers of 
 +peptidoglycan many times thicker than is found in the Gram-negatives. Threading ​
 +through these layers of peptidoglycan are long anionic polymers, called ​
 +teichoic acids. The composition and organization of these envelope layers and 
 +recent insights into the mechanisms of cell envelope assembly are 
 +discussed.","​container-title":"​Cold Spring Harbor ​
 +Perspectives in 
 +Biology","​DOI":"​10.1101/​cshperspect.a000414","​ISSN":", ​
 +1943-0264","​issue":"​5","​journalAbbreviation":"​Cold ​
 +Spring Harb Perspect ​
 +Biol","​language":"​en","​note":"​Company: ​
 +Cold Spring Harbor Laboratory Press\nDistributor:​ Cold Spring Harbor Laboratory ​
 +Press\nInstitution:​ Cold Spring Harbor Laboratory Press\nLabel:​ Cold Spring ​
 +Harbor Laboratory Press\npublisher:​ Cold Spring Harbor Lab\nPMID: ​
 +20452953","​page":"​a000414","​source":"​cshperspectives.cshlp.org","​title":"​The ​
 +Bacterial Cell 
 +Envelope","​URL":"​http://​cshperspectives.cshlp.org/​content/​2/​5/​a000414","​volume":"​2","​author":​[{"​family":"​Silhavy","​given":"​Thomas ​
 +J."​},​{"​family":"​Kahne","​given":"​Daniel"​},​{"​family":"​Walker","​given":"​Suzanne"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​1,​5]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​1</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Silhavy</​span>, ​
 +<span class=SpellE>​Kahne</​span>,​ & Walker, 2010). The OM is an asymmetric ​
 +lipid bilayer that is essential for <i style='​mso-bidi-font-style:​normal'>​E.coli''​’s ​
 +survival because it acts as the first line of <span class=SpellE>​defence</​span> ​
 +against external threats</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​G4EUP7vu","​properties":​{"​formattedCitation":"​\\super ​
 +1,​2\\nosupersub{}","​plainCitation":"​1,​2","​noteIndex":​0},"​citationItems":​[{"​id":​614,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​H9G2P5QM"​],"​itemData":​{"​id":​614,"​type":"​article-journal","​abstract":"​The ​
 +bacteria cell envelope is a complex multilayered structure that serves to 
 +protect these organisms from their unpredictable and often hostile environment. ​
 +The cell envelopes of most bacteria fall into one of two major groups. ​
 +Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which 
 +itself is surrounded by an outer membrane containing lipopolysaccharide. ​
 +Gram-positive bacteria lack an outer membrane but are surrounded by layers of 
 +peptidoglycan many times thicker than is found in the Gram-negatives. Threading ​
 +through these layers of peptidoglycan are long anionic polymers, called ​
 +teichoic acids. The composition and organization of these envelope layers and 
 +recent insights into the mechanisms of cell envelope assembly are 
 +discussed.","​container-title":"​Cold Spring Harbor ​
 +Perspectives in 
 +Biology","​DOI":"​10.1101/​cshperspect.a000414","​ISSN":", ​
 +1943-0264","​issue":"​5","​journalAbbreviation":"​Cold ​
 +Spring Harb Perspect ​
 +Biol","​language":"​en","​note":"​Company: ​
 +Cold Spring Harbor Laboratory Press\nDistributor:​ Cold Spring Harbor Laboratory ​
 +Press\nInstitution:​ Cold Spring Harbor Laboratory Press\nLabel:​ Cold Spring ​
 +Harbor Laboratory Press\npublisher:​ Cold Spring Harbor Lab\nPMID: ​
 +20452953","​page":"​a000414","​source":"​cshperspectives.cshlp.org","​title":"​The ​
 +Bacterial Cell 
 +Envelope","​URL":"​http://​cshperspectives.cshlp.org/​content/​2/​5/​a000414","​volume":"​2","​author":​[{"​family":"​Silhavy","​given":"​Thomas ​
 +J."​},​{"​family":"​Kahne","​given":"​Daniel"​},​{"​family":"​Walker","​given":"​Suzanne"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​1,​5]]}}},​{"​id":​617,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​FDC6F69M"​],"​itemData":​{"​id":​617,"​type":"​article-journal","​abstract":"​PbgA ​
 +proteins controls lipopolysaccharide synthesis in Escherichia ​
 +coli.","​container-title":"​Nature","​DOI":"​10.1038/​d41586-020-02256-x","​issue":"​7821","​language":"​en","​license":"​2021 ​
 +Nature","​note":"​Bandiera_abtest:​ a\nCg_type: News And 
 +Views\nnumber:​ 7821\npublisher:​ Nature Publishing Group\nSubject_term: ​
 +Structural biology, ​
 +Microbiology","​page":"​348-349","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of a lipopolysaccharide regulator reveals a road to new 
 +antibiotics","​URL":"​http://​www.nature.com/​articles/​d41586-020-02256-x","​volume":"​584","​author":​[{"​family":"​Bishop","​given":"​Russell ​
 +E."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​1,​2</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Bishop, 2020; <span class=SpellE>​Silhavy</​span>, ​
 +<span class=SpellE>​Kahne</​span>,​ & Walker, 2010). It prevents the entry or 
 +exit of large, hydrophobic molecules and works together with the peptidoglycan ​
 +cell wall to provide mechanical strength to the bacterial cell, protecting it 
 +from osmotic lysis</​span><​!--[if supportFields]><​span lang=EN style='​font-size: ​
 +12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​Pm7E79sY","​properties":​{"​formattedCitation":"​\\super ​
 +4\\nosupersub{}","​plainCitation":"​4","​noteIndex":​0},"​citationItems":​[{"​id":​621,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​D7M3VN8M"​],"​itemData":​{"​id":​621,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +(LPS) is an essential glycolipid present in the outer membrane (OM) of many 
 +Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell 
 +viability; too little LPS weakens the OM, while too much LPS is lethal. In 
 +Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, ​
 +which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, 
 +we provide evidence that activity of the YciM/FtsH protease complex is 
 +inhibited by the essential protein YejM. Using strains in which LpxC activity ​
 +is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM 
 +acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies ​
 +have shown that this toxicity can be suppressed by deleting lpp, which codes 
 +for a highly abundant OM lipoprotein. It was assumed that deletion of lpp 
 +restores lipid balance by increasing the number of acyl chains available for 
 +glycerophospholipid biosynthesis. We show that this is not the case. Rather, ​
 +our data suggest that preventing attachment of lpp to the peptidoglycan ​
 +sacculus allows excess LPS to be shed in vesicles. We propose that this loss of 
 +OM material allows continued transport of LPS to the OM, thus preventing lethal ​
 +accumulation of LPS within the inner membrane. Overall, our data justify the 
 +commitment of three essential inner membrane proteins to avoid toxic over- or 
 +underproduction of LPS.\nIMPORTANCE Gram-negative bacteria are encapsulated by 
 +an outer membrane (OM) that is impermeable to large and hydrophobic molecules. ​
 +As such, these bacteria are intrinsically resistant to several clinically ​
 +relevant antibiotics. To better understand how the OM is established or 
 +maintained, we sought to clarify the function of the essential protein YejM in 
 +Escherichia coli. Here, we show that YejM inhibits activity of the YciM/​FtsH ​
 +protease complex, which regulates synthesis of the essential OM glycolipid ​
 +lipopolysaccharide (LPS). Our data suggest that disrupting proper communication ​
 +between LPS synthesis and transport to the OM leads to accumulation of LPS 
 +within the inner membrane (IM). The lethality associated with this event can be 
 +suppressed by increasing OM vesiculation. Our research has identified a 
 +completely novel signaling pathway that we propose coordinates LPS synthesis ​
 +and 
 +transport.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.00598-20","​issue":"​2","​note":"​publisher: ​
 +American Society for Microbiology","​page":"​e00598-20","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​YejM Modulates Activity of the YciM/​FtsH ​
 +Protease Complex To Prevent Lethal Accumulation of 
 +Lipopolysaccharide","​URL":"​https://​journals.asm.org/​doi/​10.1128/​mBio.00598-20","​volume":"​11","​author":​[{"​family":"​Guest","​given":"​Randi ​
 +L."​},​{"​family":"​Samé ​
 +Guerra","​given":"​Daniel"​},​{"​family":"​Wissler","​given":"​Maria"​},​{"​family":"​Grimm","​given":"​Jacqueline"​},​{"​family":"​Silhavy","​given":"​Thomas ​
 +J."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​4,​14]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​4</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Guest et al., 2020). The OM is 
 +made of PLs in the inner leaflet and lipopolysaccharide (LPS) glycolipid ​
 +molecules in the outer leaflet</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​jGfiKmxu","​properties":​{"​formattedCitation":"​\\super ​
 +5\\nosupersub{}","​plainCitation":"​5","​noteIndex":​0},"​citationItems":​[{"​id":​623,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​HUNH4ZWD"​],"​itemData":​{"​id":​623,"​type":"​article-journal","​abstract":"​The ​
 +cell envelope is the first line of defense between a bacterium and the 
 +world-at-large. Often, the initial steps that determine the outcome of chemical ​
 +warfare, bacteriophage infections, and battles with other bacteria or the 
 +immune system greatly depend on the structure and composition of the bacterial ​
 +cell surface. One of the most studied bacterial surface molecules is the 
 +glycolipid known as lipopolysaccharide (LPS), which is produced by most 
 +Gram-negative bacteria. Much of the initial attention LPS received in the early 
 +1900s was owed to its ability to stimulate the immune system, for which the 
 +glycolipid was commonly known as endotoxin. It was later discovered that LPS 
 +also creates a permeability barrier at the cell surface and is a main 
 +contributor to the innate resistance that Gram-negative bacteria display ​
 +against many antimicrobials. Not surprisingly,​ these important properties of 
 +LPS have driven a vast and still prolific body of literature for more than a 
 +hundred years. LPS research has also led to pioneering studies in bacterial envelope ​
 +biogenesis and physiology, mostly using Escherichia coli and Salmonella as 
 +model systems. In this review, we will focus on the fundamental knowledge we 
 +have gained from studies of the complex structure of the LPS molecule and the 
 +biochemical pathways for its synthesis, as well as the transport of LPS across ​
 +the bacterial envelope and its assembly at the cell 
 +surface.","​container-title":"​EcoSal ​
 +Plus","​DOI":"​10.1128/​ecosalplus.ESP-0001-2018","​issue":"​1","​note":"​publisher: ​
 +American Society for Microbiology","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​Function and Biogenesis of 
 +Lipopolysaccharides","​URL":"​https://​journals.asm.org/​doi/​10.1128/​ecosalplus.ESP-0001-2018","​volume":"​8","​author":​[{"​family":"​Bertani","​given":"​Blake"​},​{"​family":"​Ruiz","​given":"​Natividad"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2018",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​5</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Bertani & Ruiz, 2018). The OM 
 +also consists of <span style='​background:​white;​mso-highlight:​white'>​OM proteins ​
 +(<span class=SpellE>​Omps</​span>​),​ exopolysaccharides (EPS), flagella and type I 
 +fimbria</​span></​span><​!--[if supportFields]><​span lang=EN style='​font-size: ​
 +12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman";​background:​white;​mso-highlight:​white'><​span style='​mso-element: ​
 +field-begin'></​span>​ ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​cseFSYyV","​properties":​{"​formattedCitation":"​\\super ​
 +6\\nosupersub{}","​plainCitation":"​6","​noteIndex":​0},"​citationItems":​[{"​id":​625,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​5RDB5DKM"​],"​itemData":​{"​id":​625,"​type":"​article-journal","​abstract":"​Escherichia ​
 +coli is generally used as model bacteria to define microbial cell factories for 
 +many products and to investigate regulation mechanisms. E. coli exhibits ​
 +phospholipids,​ lipopolysaccharides,​ colanic acid, flagella and type I fimbriae ​
 +on the outer membrane which is a self-protective barrier and closely related to 
 +cellular morphology, growth, phenotypes and stress adaptation. However, these 
 +outer membrane associated molecules could also lead to potential contamination ​
 +and insecurity for fermentation products and consume lots of nutrients and 
 +energy sources. Therefore, understanding critical insights of these membrane ​
 +associated molecules is necessary for building better microbial producers. Here 
 +the biosynthesis,​ function, influences, and current membrane engineering ​
 +applications of these outer membrane associated molecules were reviewed from 
 +the perspective of synthetic biology, and the potential and effective ​
 +engineering strategies on the outer membrane to improve fermentation features ​
 +for microbial cell factories were 
 +suggested.","​container-title":"​Microbial Cell 
 +Factories","​DOI":"​10.1186/​s12934-021-01565-8","​ISSN":"​1475-2859","​issue":"​1","​journalAbbreviation":"​Microbial ​
 +Cell Factories","​page":"​73","​source":"​BioMed ​
 +Central","​title":"​Insights into the structure of 
 +Escherichia coli outer membrane as the target for engineering microbial cell 
 +factories","​URL":"​https://​doi.org/​10.1186/​s12934-021-01565-8","​volume":"​20","​author":​[{"​family":"​Wang","​given":"​Jianli"​},​{"​family":"​Ma","​given":"​Wenjian"​},​{"​family":"​Wang","​given":"​Xiaoyuan"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2021",​3,​20]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​6</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-end'></​span></​span><​![endif]--><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'> ​
 +(Wang, Ma, & Wang, 2021). EPS, flagella, and fimbria are nonessential ​
 +structures; therefore, they are not present in all <i style='​mso-bidi-font-style: ​
 +normal'>​E. coli''​ strains</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-begin'></​span>​ ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​NU8TNhlB","​properties":​{"​formattedCitation":"​\\super ​
 +6\\nosupersub{}","​plainCitation":"​6","​noteIndex":​0},"​citationItems":​[{"​id":​625,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​5RDB5DKM"​],"​itemData":​{"​id":​625,"​type":"​article-journal","​abstract":"​Escherichia ​
 +coli is generally used as model bacteria to define microbial cell factories for 
 +many products and to investigate regulation mechanisms. E. coli exhibits ​
 +phospholipids,​ lipopolysaccharides,​ colanic acid, flagella and type I fimbriae ​
 +on the outer membrane which is a self-protective barrier and closely related to 
 +cellular morphology, growth, phenotypes and stress adaptation. However, these 
 +outer membrane associated molecules could also lead to potential contamination ​
 +and insecurity for fermentation products and consume lots of nutrients and 
 +energy sources. Therefore, understanding critical insights of these membrane ​
 +associated molecules is necessary for building better microbial producers. Here 
 +the biosynthesis,​ function, influences, and current membrane engineering ​
 +applications of these outer membrane associated molecules were reviewed from 
 +the perspective of synthetic biology, and the potential and effective ​
 +engineering strategies on the outer membrane to improve fermentation features ​
 +for microbial cell factories were 
 +suggested.","​container-title":"​Microbial Cell 
 +Factories","​DOI":"​10.1186/​s12934-021-01565-8","​ISSN":"​1475-2859","​issue":"​1","​journalAbbreviation":"​Microbial ​
 +Cell 
 +Factories","​page":"​73","​source":"​BioMed ​
 +Central","​title":"​Insights into the structure of 
 +Escherichia coli outer membrane as the target for engineering microbial cell 
 +factories","​URL":"​https://​doi.org/​10.1186/​s12934-021-01565-8","​volume":"​20","​author":​[{"​family":"​Wang","​given":"​Jianli"​},​{"​family":"​Ma","​given":"​Wenjian"​},​{"​family":"​Wang","​given":"​Xiaoyuan"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2021",​3,​20]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​6</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-end'></​span></​span><​![endif]--><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'> ​
 +(Wang, Ma, & Wang, 2021). There are three important <span class=SpellE>​Omps</​span>: ​
 +<span class=SpellE>​OmpC</​span>,​ <span class=SpellE>​OmpF</​span>,​ and OmpA</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-begin'></​span>​ ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​6h9AoQlU","​properties":​{"​formattedCitation":"​\\super ​
 +6\\nosupersub{}","​plainCitation":"​6","​noteIndex":​0},"​citationItems":​[{"​id":​625,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​5RDB5DKM"​],"​itemData":​{"​id":​625,"​type":"​article-journal","​abstract":"​Escherichia ​
 +coli is generally used as model bacteria to define microbial cell factories for 
 +many products and to investigate regulation mechanisms. E. coli exhibits ​
 +phospholipids,​ lipopolysaccharides,​ colanic acid, flagella and type I fimbriae ​
 +on the outer membrane which is a self-protective barrier and closely related to 
 +cellular morphology, growth, phenotypes and stress adaptation. However, these 
 +outer membrane associated molecules could also lead to potential contamination ​
 +and insecurity for fermentation products and consume lots of nutrients and 
 +energy sources. Therefore, understanding critical insights of these membrane ​
 +associated molecules is necessary for building better microbial producers. Here 
 +the biosynthesis,​ function, influences, and current membrane engineering ​
 +applications of these outer membrane associated molecules were reviewed from 
 +the perspective of synthetic biology, and the potential and effective ​
 +engineering strategies on the outer membrane to improve fermentation features ​
 +for microbial cell factories were 
 +suggested.","​container-title":"​Microbial Cell 
 +Factories","​DOI":"​10.1186/​s12934-021-01565-8","​ISSN":"​1475-2859","​issue":"​1","​journalAbbreviation":"​Microbial ​
 +Cell 
 +Factories","​page":"​73","​source":"​BioMed ​
 +Central","​title":"​Insights into the structure of 
 +Escherichia coli outer membrane as the target for engineering microbial cell 
 +factories","​URL":"​https://​doi.org/​10.1186/​s12934-021-01565-8","​volume":"​20","​author":​[{"​family":"​Wang","​given":"​Jianli"​},​{"​family":"​Ma","​given":"​Wenjian"​},​{"​family":"​Wang","​given":"​Xiaoyuan"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2021",​3,​20]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​6</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-end'></​span></​span><​![endif]--><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'> ​
 +(Wang, Ma, & Wang, 2021). <span class=SpellE>​OmpC</​span>​ and <​span ​
 +class=SpellE>​OmpF</​span>​ regulate the entry of small molecule solutes into the 
 +cytoplasm while <span class=SpellE>​OmpA</​span>​ maintains <i style='​mso-bidi-font-style: ​
 +normal'>​E. coli''​’s cell surface integrity</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-begin'></​span>​ ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​84c6pWvo","​properties":​{"​formattedCitation":"​\\super ​
 +6\\nosupersub{}","​plainCitation":"​6","​noteIndex":​0},"​citationItems":​[{"​id":​625,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​5RDB5DKM"​],"​itemData":​{"​id":​625,"​type":"​article-journal","​abstract":"​Escherichia ​
 +coli is generally used as model bacteria to define microbial cell factories for 
 +many products and to investigate regulation mechanisms. E. coli exhibits ​
 +phospholipids,​ lipopolysaccharides,​ colanic acid, flagella and type I fimbriae ​
 +on the outer membrane which is a self-protective barrier and closely related to 
 +cellular morphology, growth, phenotypes and stress adaptation. However, these 
 +outer membrane associated molecules could also lead to potential contamination ​
 +and insecurity for fermentation products and consume lots of nutrients and 
 +energy sources. Therefore, understanding critical insights of these membrane ​
 +associated molecules is necessary for building better microbial producers. Here 
 +the biosynthesis,​ function, influences, and current membrane engineering ​
 +applications of these outer membrane associated molecules were reviewed from 
 +the perspective of synthetic biology, and the potential and effective ​
 +engineering strategies on the outer membrane to improve fermentation features ​
 +for microbial cell factories were suggested.","​container-title":"​Microbial ​
 +Cell 
 +Factories","​DOI":"​10.1186/​s12934-021-01565-8","​ISSN":"​1475-2859","​issue":"​1","​journalAbbreviation":"​Microbial ​
 +Cell Factories","​page":"​73","​source":"​BioMed ​
 +Central","​title":"​Insights into the structure of 
 +Escherichia coli outer membrane as the target for engineering microbial cell 
 +factories","​URL":"​https://​doi.org/​10.1186/​s12934-021-01565-8","​volume":"​20","​author":​[{"​family":"​Wang","​given":"​Jianli"​},​{"​family":"​Ma","​given":"​Wenjian"​},​{"​family":"​Wang","​given":"​Xiaoyuan"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2021",​3,​20]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​6</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-end'></​span></​span><​![endif]--><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'> ​
 +(Wang, Ma, & Wang, 2021). <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +mso-no-proof:​yes'><​!--[if gte vml 1]><​v:​shapetype id="​_x0000_t75"​ coordsize="​21600,​21600" ​
 +o:​spt="​75"​ o:​preferrelative="​t"​ path="​m@4@5l@4@11@9@11@9@5xe"​ filled="​f" ​
 +stroked="​f"><​v:​stroke joinstyle="​miter"/><​v:​formulas><​v:​f eqn="​if lineDrawn pixelLineWidth 0"/><​v:​f eqn="​sum @0 1 0"/><​v:​f eqn="​sum 0 0 @1"/><​v:​f eqn="​prod @2 1 2"/><​v:​f eqn="​prod @3 21600 pixelWidth"/><​v:​f eqn="​prod @3 21600 pixelHeight"/><​v:​f eqn="​sum @0 0 1"/><​v:​f eqn="​prod @6 1 2"/><​v:​f eqn="​prod @7 21600 pixelWidth"/><​v:​f eqn="​sum @8 21600 0"/><​v:​f eqn="​prod @7 21600 pixelHeight"/><​v:​f eqn="​sum @10 21600 0"/></​v:​formulas><​v:​path o:​extrusionok="​f"​ gradientshapeok="​t"​ o:​connecttype="​rect"/><​o:​lock v:​ext="​edit"​ aspectratio="​t"/></​v:​shapetype><​v:​shape id="​image5.png"​ o:​spid="​_x0000_i1034"​ type="#​_x0000_t75" ​
 +style='​width:​4in;​height:​166.5pt;​visibility:​visible;​mso-wrap-style:​square'><​v:​imagedata src="​Wiki%20Draft%20(1)_files/​image001.png"​ o:​title=""/></​v:​shape><​![endif]--><​![if !vml]><​img width=384 height=222 ​
 +src="​Wiki%20Draft%20(1)_files/​image002.gif"​ v:​shapes="​image5.png"><​![endif]></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​10.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +background:​white;​mso-highlight:​white'>​Figure X: The cell envelope of E. coli. 
 +The cell envelope is made of the inner membrane, peptidoglycan cell wall, and 
 +outer membrane. The inner membrane consists of a phospholipid (PL) bilayer. The 
 +peptidoglycan cell wall can be found in the periplasmic space between the IM 
 +and OM. It is made up of the </​span><​span lang=EN style='​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'>​NAG-NAM ​
 +disaccharide,​ cross-linked by pentapeptide side chains. The peptidoglycan cell 
 +wall is connected to the OM via murein or Braun’s lipoprotein,​ <​span ​
 +class=SpellE>​Lpp</​span>​ (<span class=SpellE>​coloured</​span>​ dark blue). The OM 
 +consists of PLs in its inner leaflet, LPS molecules in its outer leaflet, and 
 +outer membrane proteins, <span class=SpellE>​Omps</​span>​ (<span class=SpellE>​coloured</​span> ​
 +green). The outer membrane may also contain <span class=SpellE><​span ​
 +class=GramE>​non essential</​span></​span>​ structures such as exopolysaccharides ​
 +(EPS), flagella and type I fimbria.</​span><​span lang=EN style='​font-size:​8.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman";​background:​white;​mso-highlight:​white'><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'>​LPS ​
 +Structure<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN><​a ​
 +href="​https://​www.ocl-journal.org/​articles/​ocl/​full_html/​2020/​01/​ocl200025s/​ocl200025s.html"><​span ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​1155CC;​background:​white; ​
 +mso-highlight:​white'>​https://​www.ocl-journal.org/​articles/​ocl/​full_html/​2020/​01/​ocl200025s/​ocl200025s.html</​span></​a></​span><​u><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​1155CC;​background:​white; ​
 +mso-highlight:​white'><​o:​p></​o:​p></​span></​u><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm'><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +background:​white;​mso-highlight:​white'>​LPS are glycolipids comprised of three 
 +primary regions. The first is the lipid A region, which is typically made up of 
 +a bis-phosphorylated glucosamine disaccharide that carries fatty acids in ester 
 +and amide linkages. This region is connected to the second core oligosaccharide ​
 +region via 2-keto-3 deoxy-<​span class=SpellE>​octulosonic</​span>​ acid (<​span ​
 +class=SpellE>​Kdo</​span>​). The third region is the O-chain, consisting of 
 +repeating oligosaccharide units and differs from one bacterium to another.<​o:​p></​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm'><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +background:​white;​mso-highlight:​white'>​LPS Function<​o:​p></​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm;​text-indent:​36.0pt'><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman";​background:​white;​mso-highlight:​white'>​LPS provides a 
 +permeability barrier that prevents the entry of harmful molecules. High density ​
 +of saturated fatty acids <span class=GramE>​cause</​span>​ broadly and strong ​
 +interaction with the acyl chain, and it synthesizes a low fluidity of the 
 +membrane bilayer. In addition, divalent cations between LPS molecules stabilize ​
 +the high negativity of the membrane, which is caused by the presence of the 
 +phosphate group. <span class=SpellE>​Polyionic</​span>​ interaction within the 
 +outer membrane promotes LPS packing, and constructs LPS as a permeability ​
 +barrier.<​o:​p></​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm;​text-indent:​36.0pt'><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman";​background:​white;​mso-highlight:​white'>​LPS also contributes to 
 +impacting the virulence of the bacteria cell. LPS is more <span class=GramE>​stable<​span ​
 +style='​mso-spacerun:​yes'>​  </​span>​by</​span>​ comparing with bacterial exotoxins, ​
 +and is the primary<​o:​p></​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm;​text-indent:​36.0pt'><​span lang=EN><​a ​
 +href="​https://​www.ncbi.nlm.nih.gov/​books/​NBK554414/#:​~:​text=The%20primary%20function%20of%20LPS,​inhabitation%20in%20the%20gastrointestinal%20tract"><​span ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​1155CC;​background:​white; ​
 +mso-highlight:​white'>​https://​www.ncbi.nlm.nih.gov/​books/​NBK554414/#:​~:​text=The%20primary%20function%20of%20LPS,​inhabitation%20in%20the%20gastrointestinal%20tract</​span></​a></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'>​. ​
 +</​span><​!--[if supportFields]><​span lang=EN style='​font-size:​12.0pt;​line-height: ​
 +115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +background:​white;​mso-highlight:​white'><​span style='​mso-element:​field-begin'></​span><​span ​
 +style='​mso-spacerun:​yes'>​ </​span>​ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​zc9EP2pc","​properties":​{"​formattedCitation":"​\\super ​
 +7\\nosupersub{}","​plainCitation":"​7","​noteIndex":​0},"​citationItems":​[{"​id":​646,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​T75BDR5A"​],"​itemData":​{"​id":​646,"​type":"​chapter","​abstract":"​Lipopolysaccharides ​
 +(LPS) are important outer membrane components of gram-negative bacteria. They 
 +are large amphipathic glycoconjugates that typically consist of a lipid domain ​
 +(hydrophobic) attached to a core oligosaccharide and a distal polysaccharide. ​
 +These molecules are also known as lipogylcans due to the presence of lipid and 
 +sugar molecules. The lipopolysaccharides are composed of: 1. Lipid A: 
 +the hydrophobic domain, which is an endotoxin and the main virulence factor. 2. 
 +O-antigen, the repeating hydrophilic distal oligosaccharide. 3. The hydrophilic ​
 +core polysaccharide. The lipid A component varies from one organism to another ​
 +and is essential in imparting specific pathogenic attributes to the 
 +bacteria. Inherent to gram-negative bacteria, LPS provides integrity to 
 +the bacterial cell and a mechanism of interaction of the bacteria to other 
 +surfaces. Most bacterial LPS molecules are thermostable and generate a 
 +robust pro-inflammatory stimulus for the immune system in mammals. Since different ​
 +types of LPS are present in different genera of gram-negative bacteria, LPS is 
 +used for serotyping gram-negative bacteria. More specifically,​ the 
 +O-antigen imparts serological distinction to the bacterial species. Also, the 
 +size and composition of LPS are highly dynamic among bacterial species. Due to 
 +its unique properties, LPS has gained considerable research focus to understand ​
 +its complex structure, biogenesis, transport, and assembly. Besides, LPS is 
 +also a recognized biomarker due to its central role in host-pathogen ​
 +interaction that facilitates the infection ​
 +process.","​call-number":"​NBK554414","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island (FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID:​ 32119301","​publisher":"​StatPearls ​
 +Publishing","​publisher-place":"​Treasure Island ​
 +(FL)","​source":"​PubMed","​title":"​Biochemistry, ​
 +Lipopolysaccharide","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK554414/","​author":​[{"​family":"​Farhana","​given":"​Aisha"​},​{"​family":"​Khan","​given":"​Yusuf ​
 +S."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​7</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-element:​field-end'></​span></​span><​![endif]--><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'> ​
 +(Farhana)<​o:​p></​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm;​text-indent:​36.0pt'><​span lang=EN><​a ​
 +href="​https://​www.ncbi.nlm.nih.gov/​pmc/​articles/​PMC6091223/"><​span ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​1155CC;​background:​white; ​
 +mso-highlight:​white'>​https://​www.ncbi.nlm.nih.gov/​pmc/​articles/​PMC6091223/</​span></​a></​span><​u><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​1155CC;​background:​white; ​
 +mso-highlight:​white'></​span></​u><​!--[if supportFields]><​u><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​1155CC;​background:​white; ​
 +mso-highlight:​white'><​span style='​mso-element:​field-begin'></​span><​span ​
 +style='​mso-spacerun:​yes'>​ </​span>​ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​NPayMhvD","​properties":​{"​formattedCitation":"​\\super ​
 +5\\nosupersub{}","​plainCitation":"​5","​noteIndex":​0},"​citationItems":​[{"​id":​623,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​HUNH4ZWD"​],"​itemData":​{"​id":​623,"​type":"​article-journal","​abstract":"​The ​
 +cell envelope is the first line of defense between a bacterium and the 
 +world-at-large. Often, the initial steps that determine the outcome of chemical ​
 +warfare, bacteriophage infections, and battles with other bacteria or the 
 +immune system greatly depend on the structure and composition of the bacterial ​
 +cell surface. One of the most studied bacterial surface molecules is the glycolipid ​
 +known as lipopolysaccharide (LPS), which is produced by most Gram-negative ​
 +bacteria. Much of the initial attention LPS received in the early 1900s was 
 +owed to its ability to stimulate the immune system, for which the glycolipid ​
 +was commonly known as endotoxin. It was later discovered that LPS also creates ​
 +a permeability barrier at the cell surface and is a main contributor to the 
 +innate resistance that Gram-negative bacteria display against many 
 +antimicrobials. Not surprisingly,​ these important properties of LPS have driven ​
 +a vast and still prolific body of literature for more than a hundred years. LPS 
 +research has also led to pioneering studies in bacterial envelope biogenesis ​
 +and physiology, mostly using Escherichia coli and Salmonella as model systems. ​
 +In this review, we will focus on the fundamental knowledge we have gained from 
 +studies of the complex structure of the LPS molecule and the biochemical ​
 +pathways for its synthesis, as well as the transport of LPS across the 
 +bacterial envelope and its assembly at the cell 
 +surface.","​container-title":"​EcoSal ​
 +Plus","​DOI":"​10.1128/​ecosalplus.ESP-0001-2018","​issue":"​1","​note":"​publisher: ​
 +American Society for Microbiology","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​Function and Biogenesis of 
 +Lipopolysaccharides","​URL":"​https://​journals.asm.org/​doi/​10.1128/​ecosalplus.ESP-0001-2018","​volume":"​8","​author":​[{"​family":"​Bertani","​given":"​Blake"​},​{"​family":"​Ruiz","​given":"​Natividad"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2018",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span></​u><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​5</​span></​sup><​!--[if supportFields]><​u><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​1155CC;​background:​white; ​
 +mso-highlight:​white'><​span style='​mso-element:​field-end'></​span></​span></​u><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​background:​white;​mso-highlight:​white'><​o:​p></​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm;​text-indent:​36.0pt'><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman";​background:​white;​mso-highlight:​white'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm;​text-indent:​36.0pt'><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman";​background:​white;​mso-highlight:​white'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm'><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +background:​white;​mso-highlight:​white'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm'><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +background:​white;​mso-highlight:​white'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm'><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +background:​white;​mso-highlight:​white'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal style='​margin-top:​12.0pt;​margin-right:​0cm;​margin-bottom: ​
 +12.0pt;​margin-left:​0cm'><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +background:​white;​mso-highlight:​white'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.0 LPS synthesis<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​The ​
 +LPS biosynthesis pathway is crucial for the structural makeup of gram-negative ​
 +bacteria’s outer membrane</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​duQKHHWi","​properties":​{"​formattedCitation":"​\\super ​
 +8\\nosupersub{}","​plainCitation":"​8","​noteIndex":​0},"​citationItems":​[{"​id":​638,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​ZRPN7M3N"​],"​itemData":​{"​id":​638,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +that constitutes the outer leaflet of the outer membrane of most Gram-negative ​
 +bacteria is referred to as an endotoxin. It is comprised of a hydrophilic polysaccharide ​
 +and a hydrophobic component referred to as lipid A. Lipid A is responsible for 
 +the major bioactivity of endotoxin, and is recognized by immune cells as a 
 +pathogen-associated molecule. Most enzymes and genes coding for proteins ​
 +responsible for the biosynthesis and export of lipopolysaccharide in 
 +Escherichia coli have been identified, and they are shared by most 
 +Gram-negative bacteria based on genetic information. The detailed structure of 
 +lipopolysaccharide differs from one bacterium to another, consistent with the 
 +recent discovery of additional enzymes and gene products that can modify the 
 +basic structure of lipopolysaccharide in some bacteria, especially pathogens. ​
 +These modifications are not required for survival, but are tightly regulated in 
 +the cell and closely related to the virulence of bacteria. In this review we 
 +discuss recent studies of the biosynthesis and export of lipopolysaccharide, ​
 +and the relationship between the structure of lipopolysaccharide and the 
 +virulence of bacteria.","​container-title":"​Progress in 
 +Lipid 
 +Research","​DOI":"​10.1016/​j.plipres.2009.06.002","​ISSN":"​0163-7827","​issue":"​2","​journalAbbreviation":"​Progress ​
 +in Lipid Research","​language":"​en","​page":"​97-107","​source":"​ScienceDirect","​title":"​Lipopolysaccharide: ​
 +Biosynthetic pathway and structure ​
 +modification","​title-short":"​Lipopolysaccharide","​URL":"​https://​www.sciencedirect.com/​science/​article/​pii/​S0163782709000526","​volume":"​49","​author":​[{"​family":"​Wang","​given":"​Xiaoyuan"​},​{"​family":"​Quinn","​given":"​Peter ​
 +J."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​4,​1]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​8</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Wang & Quinn, 2010). Reflected ​
 +in the structure of LPS, its synthesis is dependent on the formation of its 
 +three regions: Lipid A, the core oligosaccharide,​ and the O-antigen. LPS 
 +synthesis occurs within the cytoplasm along the inner membrane surface.<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.1 Lipid A synthesis<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​The ​
 +LPS biosynthesis starts with the conserved pathway of lipid A synthesis as 
 +displayed in <b style='​mso-bidi-font-weight:​normal'>​Figure X '''</​span><​!--[if supportFields]><​b ​
 +style='​mso-bidi-font-weight:​normal'><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span><​span ​
 +style='​mso-spacerun:​yes'>​ </​span>​ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​2I1GZm5a","​properties":​{"​formattedCitation":"​\\super ​
 +9\\nosupersub{}","​plainCitation":"​9","​noteIndex":​0},"​citationItems":​[{"​id":​642,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​WA5WMMWJ"​],"​itemData":​{"​id":​642,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +molecules represent a unique family of glycolipids based on a highly conserved ​
 +lipid moiety known as lipid A. These molecules are produced by most 
 +gram-negative bacteria, in which they play important roles in the integrity of 
 +the outer-membrane permeability barrier and participate extensively in 
 +host?​pathogen interplay. Few bacteria contain lipopolysaccharide molecules ​
 +composed only of lipid A. In most forms, lipid A is glycosylated by addition of 
 +the core oligosaccharide that, in some bacteria, provides an attachment site 
 +for a long-chain O-antigenic polysaccharide. The complexity of 
 +lipopolysaccharide structures is reflected in the processes used for their 
 +biosynthesis and export. Rapid growth and cell division depend on the bacterial ​
 +cell's capacity to synthesize and export lipopolysaccharide efficiently and in 
 +large amounts. We review recent advances in those processes, emphasizing the 
 +reactions that are essential for 
 +viability.","​container-title":"​Annual Review of 
 +Biochemistry","​DOI":"​10.1146/​annurev-biochem-060713-035600","​ISSN":"​0066-4154","​issue":"​1","​journalAbbreviation":"​Annu. ​
 +Rev. Biochem.","​note":"​publisher:​ Annual ​
 +Reviews","​page":"​99-128","​title":"​Biosynthesis ​
 +and Export of Bacterial ​
 +Lipopolysaccharides","​URL":"​https://​doi.org/​10.1146/​annurev-biochem-060713-035600","​volume":"​83","​author":​[{"​family":"​Whitfield","​given":"​Chris"​},​{"​family":"​Trent","​given":"​M. ​
 +Stephen"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​2]]},"​issued":​{"​date-parts":​[["​2014",​6,​2]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span>'''<​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​9</​span></​sup><​!--[if supportFields]><​b ​
 +style='​mso-bidi-font-weight:​normal'><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span>'''<​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Whitfield & Trent, 2014). This 
 +pathway begins with a UDP-N-acetylglucosamine (UDP-<​span class=SpellE>​GlcNAc</​span>​) ​
 +molecule</​span><​!--[if supportFields]><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​TH4VaFYV","​properties":​{"​formattedCitation":"​\\super ​
 +8\\nosupersub{}","​plainCitation":"​8","​noteIndex":​0},"​citationItems":​[{"​id":​638,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​ZRPN7M3N"​],"​itemData":​{"​id":​638,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +that constitutes the outer leaflet of the outer membrane of most Gram-negative ​
 +bacteria is referred to as an endotoxin. It is comprised of a hydrophilic ​
 +polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is 
 +responsible for the major bioactivity of endotoxin, and is recognized by immune ​
 +cells as a pathogen-associated molecule. Most enzymes and genes coding for 
 +proteins responsible for the biosynthesis and export of lipopolysaccharide in 
 +Escherichia coli have been identified, and they are shared by most 
 +Gram-negative bacteria based on genetic information. The detailed structure of 
 +lipopolysaccharide differs from one bacterium to another, consistent with the 
 +recent discovery of additional enzymes and gene products that can modify the 
 +basic structure of lipopolysaccharide in some bacteria, especially pathogens. ​
 +These modifications are not required for survival, but are tightly regulated in 
 +the cell and closely related to the virulence of bacteria. In this review we 
 +discuss recent studies of the biosynthesis and export of lipopolysaccharide, ​
 +and the relationship between the structure of lipopolysaccharide and the 
 +virulence of bacteria.","​container-title":"​Progress in 
 +Lipid Research","​DOI":"​10.1016/​j.plipres.2009.06.002","​ISSN":"​0163-7827","​issue":"​2","​journalAbbreviation":"​Progress ​
 +in Lipid 
 +Research","​language":"​en","​page":"​97-107","​source":"​ScienceDirect","​title":"​Lipopolysaccharide: ​
 +Biosynthetic pathway and structure ​
 +modification","​title-short":"​Lipopolysaccharide","​URL":"​https://​www.sciencedirect.com/​science/​article/​pii/​S0163782709000526","​volume":"​49","​author":​[{"​family":"​Wang","​given":"​Xiaoyuan"​},​{"​family":"​Quinn","​given":"​Peter ​
 +J."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​4,​1]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​8</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Wang & Quinn, 2010). Lipid A 
 +synthesis involves the addition of hydrophobic fatty acid chains to UDP-<​span ​
 +class=SpellE>​GlcNAc</​span>​ catalyzed by <span class=SpellE>​LpxA</​span>,​ <​span ​
 +class=SpellE>​LpxC</​span>​ and <span class=SpellE>​LpxD</​span>,​ forming ​
 +UDP-diacyl-<​span class=SpellE>​GlcN</​span>​. <span style='​color:#​212121; ​
 +background:​white;​mso-highlight:​white'>​Although the biosynthesis begins with the 
 +acylation of UDP-<​span class=SpellE>​GlcNAc</​span>,​ catalyzed by <​span ​
 +class=SpellE>​LpxA</​span>,​ this reaction is thermodynamically unfavourable</​span></​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​212121;​background:​white; ​
 +mso-highlight:​white'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​8vx6d2Gc","​properties":​{"​formattedCitation":"​\\super ​
 +10\\nosupersub{}","​plainCitation":"​10","​noteIndex":​0},"​citationItems":​[{"​id":​632,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​W6EZIQHQ"​],"​itemData":​{"​id":​632,"​type":"​article-journal","​abstract":"​Multi-drug ​
 +resistant (MDR), pathogenic Gram-negative bacteria pose a serious health ​
 +threat, and novel antibiotic targets must be identified to combat MDR infections. ​
 +One promising target is the zinc-dependent metalloamidase ​
 +UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC), which 
 +catalyzes the committed step of lipid A (endotoxin) biosynthesis. LpxC is an 
 +essential, single copy gene that is conserved in virtually all Gram-negative ​
 +bacteria. LpxC structures, revealed by NMR and X-ray crystallography, ​
 +demonstrate that LpxC adopts a novel ‘β-α-α-β sandwich’ ​
 +fold and encapsulates the acyl chain of the substrate with a unique hydrophobic ​
 +passage. Kinetic analysis revealed that LpxC functions by a general acid-base ​
 +mechanism, with a glutamate serving as the general base.<​span ​
 +style='​mso-spacerun:​yes'>​   </​span>​Many potent LpxC inhibitors have been 
 +identified, and most contain a hydroxamate group targeting the catalytic zinc 
 +ion. Although early LpxC-inhibitors were either narrow-spectrum antibiotics or 
 +broad-spectrum in vitro LpxC inhibitors with limited antibiotic properties, the 
 +recently discovered compound CHIR-090 is a powerful antibiotic that controls ​
 +the growth of Escherichia coli and Pseudomonas aeruginosa, with an efficacy ​
 +rivaling that of the FDA-approved antibiotic ciprofloxacin. CHIR-090 inhibits a 
 +wide range of LpxC enzymes with sub-nanomolar affinity in vitro, and is a 
 +two-step, slow, tight-binding inhibitor of Aquifex aeolicus and E. coli LpxC. 
 +The success of CHIR-090 suggests that potent LpxCtargeting antibiotics may be 
 +developed to control a broad range of Gram-negative ​
 +bacteria.","​container-title":"​Current Pharmaceutical ​
 +Biotechnology","​issue":"​1","​language":"​en","​page":"​9-15","​source":"​www.eurekaselect.com","​title":"​Mechanism ​
 +and Inhibition of LpxC: An Essential Zinc-Dependent Deacetylase of Bacterial ​
 +Lipid A Synthesis","​title-short":"​Mechanism and Inhibition ​
 +of 
 +LpxC","​URL":"​https://​www.eurekaselect.com/​article/​11296","​volume":"​9","​author":​[{"​family":"​Zhou","​given":"​Pei"​},​{"​family":"​Barb","​given":"​Adam ​
 +W."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​10</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​212121;​background:​white; ​
 +mso-highlight:​white'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​212121;​background:​white; ​
 +mso-highlight:​white'>​ (Barb & Zhou, 2008). Thus, the first committed step 
 +of lipid A biosynthesis is the deacetylation reaction catalyzed by <​span ​
 +class=SpellE>​LpxC</​span></​span><​span lang=EN style='​font-size:​15.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman";​color:#​212121;​background:​white;​mso-highlight:​white'>​. </​span><​span ​
 +class=SpellE><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family: ​
 +"Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​LpxC</​span></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ is a crucial enzyme as it catalyzes ​
 +the non-reversible step in lipid A synthesis which is the deacetylation of UDP-3-O-(acyl)-<​span ​
 +class=SpellE>​GlcNAc</​span>​. <span class=SpellE>​LpxC</​span>​ also has a unique ​
 +sequence compared to other deacetylases and plays a regulatory role in lipid A 
 +biosynthesis,​ which makes it an attractive target for antibiotic development</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​8KyB55he","​properties":​{"​formattedCitation":"​\\super ​
 +8\\nosupersub{}","​plainCitation":"​8","​noteIndex":​0},"​citationItems":​[{"​id":​638,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​ZRPN7M3N"​],"​itemData":​{"​id":​638,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +that constitutes the outer leaflet of the outer membrane of most Gram-negative ​
 +bacteria is referred to as an endotoxin. It is comprised of a hydrophilic ​
 +polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is 
 +responsible for the major bioactivity of endotoxin, and is recognized by immune ​
 +cells as a pathogen-associated molecule. Most enzymes and genes coding for 
 +proteins responsible for the biosynthesis and export of lipopolysaccharide in 
 +Escherichia coli have been identified, and they are shared by most 
 +Gram-negative bacteria based on genetic information. The detailed structure of 
 +lipopolysaccharide differs from one bacterium to another, consistent with the 
 +recent discovery of additional enzymes and gene products that can modify the 
 +basic structure of lipopolysaccharide in some bacteria, especially pathogens. ​
 +These modifications are not required for survival, but are tightly regulated in 
 +the cell and closely related to the virulence of bacteria. In this review we 
 +discuss recent studies of the biosynthesis and export of lipopolysaccharide, ​
 +and the relationship between the structure of lipopolysaccharide and the 
 +virulence of bacteria.","​container-title":"​Progress in 
 +Lipid Research","​DOI":"​10.1016/​j.plipres.2009.06.002","​ISSN":"​0163-7827","​issue":"​2","​journalAbbreviation":"​Progress ​
 +in Lipid 
 +Research","​language":"​en","​page":"​97-107","​source":"​ScienceDirect","​title":"​Lipopolysaccharide: ​
 +Biosynthetic pathway and structure ​
 +modification","​title-short":"​Lipopolysaccharide","​URL":"​https://​www.sciencedirect.com/​science/​article/​pii/​S0163782709000526","​volume":"​49","​author":​[{"​family":"​Wang","​given":"​Xiaoyuan"​},​{"​family":"​Quinn","​given":"​Peter ​
 +J."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​4,​1]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​8</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Wang & Quinn, 2010). Following ​
 +<span class=SpellE>​LpxD</​span>​ action, UDP-diacyl-<​span class=SpellE>​GlcN</​span> ​
 +undergoes a series of reactions catalyzed by three other enzymes, <​span ​
 +class=SpellE>​LpxH</​span>,​ <span class=SpellE>​LpxB</​span>​ and <​span ​
 +class=SpellE>​LpxK</​span>,​ to compose lipid IV<​sub>​A</​sub>​.<​span ​
 +style='​mso-spacerun:​yes'>​  </​span>​Two <span class=SpellE>​Kdo</​span>​ molecules ​
 +are added to Lipid IV<​sub>​A</​sub>,​ catalyzed by the bifunctional <​span ​
 +class=SpellE>​KdtA</​span>​. Kdo<​sub>​2</​sub>​-LipidIV<​sub>​A</​sub>​ is further ​
 +modified with acyltransferases,​ <span class=SpellE>​LpxL</​span>​ and <​span ​
 +class=SpellE>​LpxM</​span>,​ to form Kdo<​sub>​2</​sub>​-Lipid A.<​span ​
 +style='​mso-spacerun:​yes'>​  </​span>​Kdo<​sub>​2</​sub>​-Lipid A is the active form 
 +that is used for the addition of core oligosaccharides and overall assembly of 
 +LPS.<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.2 Core Oligosaccharides ​
 +synthesis/​addition<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​The ​
 +core oligosaccharides are added to lipid A on the cytoplasmic surface of the 
 +inner membrane through membrane-bound glycosyltransferases and nucleotide sugar 
 +donors</​span><​!--[if supportFields]><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​Hvjl9LDm","​properties":​{"​formattedCitation":"​\\super ​
 +8\\nosupersub{}","​plainCitation":"​8","​noteIndex":​0},"​citationItems":​[{"​id":​638,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​ZRPN7M3N"​],"​itemData":​{"​id":​638,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +that constitutes the outer leaflet of the outer membrane of most Gram-negative ​
 +bacteria is referred to as an endotoxin. It is comprised of a hydrophilic ​
 +polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is 
 +responsible for the major bioactivity of endotoxin, and is recognized by immune ​
 +cells as a pathogen-associated molecule. Most enzymes and genes coding for 
 +proteins responsible for the biosynthesis and export of lipopolysaccharide in 
 +Escherichia coli have been identified, and they are shared by most Gram-negative ​
 +bacteria based on genetic information. The detailed structure of 
 +lipopolysaccharide differs from one bacterium to another, consistent with the 
 +recent discovery of additional enzymes and gene products that can modify the 
 +basic structure of lipopolysaccharide in some bacteria, especially pathogens. ​
 +These modifications are not required for survival, but are tightly regulated in 
 +the cell and closely related to the virulence of bacteria. In this review we 
 +discuss recent studies of the biosynthesis and export of lipopolysaccharide, ​
 +and the relationship between the structure of lipopolysaccharide and the 
 +virulence of bacteria.","​container-title":"​Progress in 
 +Lipid Research","​DOI":"​10.1016/​j.plipres.2009.06.002","​ISSN":"​0163-7827","​issue":"​2","​journalAbbreviation":"​Progress ​
 +in Lipid 
 +Research","​language":"​en","​page":"​97-107","​source":"​ScienceDirect","​title":"​Lipopolysaccharide: ​
 +Biosynthetic pathway and structure modification","​title-short":"​Lipopolysaccharide","​URL":"​https://​www.sciencedirect.com/​science/​article/​pii/​S0163782709000526","​volume":"​49","​author":​[{"​family":"​Wang","​given":"​Xiaoyuan"​},​{"​family":"​Quinn","​given":"​Peter ​
 +J."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​4,​1]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​8</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Wang & Quinn, 2010). The core 
 +oligosaccharides have two components: the inner core and the outer core. The 
 +inner core is the conserved region of the core oligosaccharides and includes <​span ​
 +class=SpellE>​Kdo</​span>​ molecules as well as the L-<span class=SpellE>​glycero</​span>​-D-<​span ​
 +class=SpellE>​manno</​span>​-heptose molecule (Hep)</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​9jd2Utu1","​properties":​{"​formattedCitation":"​\\super ​
 +9\\nosupersub{}","​plainCitation":"​9","​noteIndex":​0},"​citationItems":​[{"​id":​642,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​WA5WMMWJ"​],"​itemData":​{"​id":​642,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +molecules represent a unique family of glycolipids based on a highly conserved ​
 +lipid moiety known as lipid A. These molecules are produced by most 
 +gram-negative bacteria, in which they play important roles in the integrity of 
 +the outer-membrane permeability barrier and participate extensively in 
 +host?​pathogen interplay. Few bacteria contain lipopolysaccharide molecules ​
 +composed only of lipid A. In most forms, lipid A is glycosylated by addition of 
 +the core oligosaccharide that, in some bacteria, provides an attachment site 
 +for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide ​
 +structures is reflected in the processes used for their biosynthesis and 
 +export. Rapid growth and cell division depend on the bacterial cell's capacity ​
 +to synthesize and export lipopolysaccharide efficiently and in large amounts. ​
 +We review recent advances in those processes, emphasizing the reactions that 
 +are essential for viability.","​container-title":"​Annual ​
 +Review of 
 +Biochemistry","​DOI":"​10.1146/​annurev-biochem-060713-035600","​ISSN":"​0066-4154","​issue":"​1","​journalAbbreviation":"​Annu. ​
 +Rev. Biochem.","​note":"​publisher:​ Annual ​
 +Reviews","​page":"​99-128","​title":"​Biosynthesis ​
 +and Export of Bacterial ​
 +Lipopolysaccharides","​URL":"​https://​doi.org/​10.1146/​annurev-biochem-060713-035600","​volume":"​83","​author":​[{"​family":"​Whitfield","​given":"​Chris"​},​{"​family":"​Trent","​given":"​M. ​
 +Stephen"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​2]]},"​issued":​{"​date-parts":​[["​2014",​6,​2]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​9</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Whitfield & Trent, 2014). The 
 +formation and attachment of Hep are mediated by enzymes synthesized by the <​span ​
 +class=SpellE><​i style='​mso-bidi-font-style:​normal'>​gmhD''</​span><​i ​
 +style='​mso-bidi-font-style:​normal'>''​operon. On the other hand, the outer 
 +core region is less conserved. The outer core oligosaccharides are synthesized ​
 +by gene products of the <span class=SpellE>​waaQ</​span>​ operons.<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.3 O-antigen addition<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​The ​
 +O-antigen polymers are added to the outer core oligosaccharides through ​
 +glycosyltransferases and nucleotide sugar donors</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​TLflZagS","​properties":​{"​formattedCitation":"​\\super ​
 +8\\nosupersub{}","​plainCitation":"​8","​noteIndex":​0},"​citationItems":​[{"​id":​638,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​ZRPN7M3N"​],"​itemData":​{"​id":​638,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +that constitutes the outer leaflet of the outer membrane of most Gram-negative ​
 +bacteria is referred to as an endotoxin. It is comprised of a hydrophilic ​
 +polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is 
 +responsible for the major bioactivity of endotoxin, and is recognized by immune ​
 +cells as a pathogen-associated molecule. Most enzymes and genes coding for 
 +proteins responsible for the biosynthesis and export of lipopolysaccharide in 
 +Escherichia coli have been identified, and they are shared by most 
 +Gram-negative bacteria based on genetic information. The detailed structure of 
 +lipopolysaccharide differs from one bacterium to another, consistent with the 
 +recent discovery of additional enzymes and gene products that can modify the 
 +basic structure of lipopolysaccharide in some bacteria, especially pathogens. ​
 +These modifications are not required for survival, but are tightly regulated in 
 +the cell and closely related to the virulence of bacteria. In this review we 
 +discuss recent studies of the biosynthesis and export of lipopolysaccharide, ​
 +and the relationship between the structure of lipopolysaccharide and the 
 +virulence of bacteria.","​container-title":"​Progress in Lipid 
 +Research","​DOI":"​10.1016/​j.plipres.2009.06.002","​ISSN":"​0163-7827","​issue":"​2","​journalAbbreviation":"​Progress ​
 +in Lipid Research","​language":"​en","​page":"​97-107","​source":"​ScienceDirect","​title":"​Lipopolysaccharide: ​
 +Biosynthetic pathway and structure modification","​title-short":"​Lipopolysaccharide","​URL":"​https://​www.sciencedirect.com/​science/​article/​pii/​S0163782709000526","​volume":"​49","​author":​[{"​family":"​Wang","​given":"​Xiaoyuan"​},​{"​family":"​Quinn","​given":"​Peter ​
 +J."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2010",​4,​1]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​8</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Wang & Quinn, 2010). The <​span ​
 +class=SpellE><​i style='​mso-bidi-font-style:​normal'>​rfb''</​span>​ gene cluster ​
 +enzyme derivatives contribute to O-antigen diversity through the creation of 
 +enzymes for varying sugar-nucleotide precursors. The <span class=SpellE><​i ​
 +style='​mso-bidi-font-style:​normal'>​rfb''</​span>​ operon also synthesizes ​
 +glycosyltransferases,​ polymerases,​ and proteins needed for O-antigen transport ​
 +through the inner membrane.<​o:​p></​o:​p></​span><​p class=MsoNormal style='​margin-bottom:​12.0pt'><​span lang=EN style='​font-size: ​
 +12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-spacerun:​yes'>​ </​span><​span ​
 +style='​mso-no-proof:​yes'><​!--[if gte vml 1]><​v:​shape id="​image1.png"​ o:​spid="​_x0000_i1033" ​
 +type="#​_x0000_t75"​ style='​width:​468pt;​height:​328pt;​visibility:​visible; ​
 +mso-wrap-style:​square'><​v:​imagedata src="​Wiki%20Draft%20(1)_files/​image003.png"​ o:​title=""/></​v:​shape><​![endif]--><​![if !vml]><​img border=0 width=624 height=437 ​
 +src="​Wiki%20Draft%20(1)_files/​image004.gif"​ v:​shapes="​image1.png"><​![endif]></​span><​o:​p></​o:​p></​span><​p class=MsoNormal style='​margin-bottom:​12.0pt'><​b style='​mso-bidi-font-weight: ​
 +normal'><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family: ​
 +"Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Figure X</​span>'''<​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>:​ Kdo2-Lipid A synthesis, the first 
 +part of LPS synthesis. Kdo2-Lipid A synthesis involves the first committed step 
 +in LPS synthesis, catalyzed by <span class=SpellE>​LpxC</​span>,​ which is the 
 +deacetylation of UDP-3-O-(acyl)-<​span class=SpellE>​GlcNAc</​span>​ (red box)</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​IUPlTF6N","​properties":​{"​formattedCitation":"​\\super ​
 +11\\nosupersub{}","​plainCitation":"​11","​noteIndex":​0},"​citationItems":​[{"​id":​636,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​KN5AUCNU"​],"​itemData":​{"​id":​636,"​type":"​article-journal","​abstract":"​UDP-N-acetylglucosamine ​
 +(UDP-GlcNAc) acyltransferase (LpxA) catalyzes the first step of lipid A 
 +biosynthesis,​ the reversible transfer of the R-3-hydroxyacyl chain from 
 +R-3-hydroxyacyl acyl carrier protein to the glucosamine 3-OH group of 
 +UDP-GlcNAc. Escherichia coli LpxA is highly selective for R-3-hydroxymyristate. ​
 +The crystal structure of the E. coli LpxA homotrimer, determined previously in 
 +the absence of lipid substrates or products, revealed that LpxA contains an 
 +unusual, left-handed parallel β-helix fold. We have now solved the crystal ​
 +structures of E. coli LpxA with the bound product ​
 +UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc at a resolution of 1.74 Å and with bound 
 +UDP-3-O-(R-3-hydroxydecanoyl)-GlcNAc at 1.85 Å. The structures of these 
 +complexes are consistent with the catalytic mechanism deduced by mutagenesis ​
 +and with a recent 3.0-Å structure of LpxA with bound UDP-GlcNAc. Our structures ​
 +show how LpxA selects for 14-carbon R-3-hydroxyacyl chains and reveal two modes 
 +of UDP binding.","​container-title":"​Proceedings of the 
 +National Academy of 
 +Sciences","​DOI":"​10.1073/​pnas.0705833104","​issue":"​34","​note":"​publisher: ​
 +Proceedings of the National Academy of 
 +Sciences","​page":"​13543-13550","​source":"​pnas.org ​
 +(Atypon)","​title":"​Structural basis for the acyl chain 
 +selectivity and mechanism of UDP-N-acetylglucosamine ​
 +acyltransferase","​URL":"​https://​www.pnas.org/​doi/​full/​10.1073/​pnas.0705833104","​volume":"​104","​author":​[{"​family":"​Williams","​given":"​Allison ​
 +H."​},​{"​family":"​Raetz","​given":"​Christian ​
 +R. H."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2007",​8,​21]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​11</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Williams & <span class=SpellE>​Raetz</​span>, ​
 +2007). <​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN>​LPS ​
 +transport <​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN>​LPS transport begins with the movement of LPS 
 +from the inner membrane to the outer membrane and involves <span class=SpellE>​MsbA</​span> ​
 +translocation (<span class=SpellE>​Sperandeo</​span>​ et al., 2017). <​span ​
 +class=SpellE>​MsbA</​span><​span class=SpellE>​flippase</​span>​ catalyzes the 
 +flipping of the Lipid A core moiety across the inner membrane. Following ​
 +complete synthesis, the movement of the mature LPS molecule to the cell surface ​
 +is assisted by the LPT molecular machine. Broadly, the transport of LPS from 
 +the inner membrane to the outer membrane can be divided into three key steps: ​
 +LPS detachment from the inner membrane, LPS transport across the periplasm, and 
 +LPS insertion and assembly in the outer membrane at the cell surface (<​span ​
 +class=SpellE>​Sperandeo</​span>​ et al., 2017). </​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN>​Regulation ​
 +<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​LPS ​
 +assembly begins on the internal surface of the <span class=GramE><​i ​
 +style='​mso-bidi-font-style:​normal'>​E.coli''</​span>​ membrane. The rate of LPS 
 +assembly is controlled by <span class=SpellE>​LpxC</​span>​. Prior to the 
 +completion of LPS biosynthesis,​ the lipid undergoes further modifications when 
 +it is flipped to the external surface of the inner membrane. Following ​
 +synthesis completion, LPS is transported to the outer membrane’s external ​
 +surface via a protein bridge that connects both the inner and outer membranes</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​vnUtrtYB","​properties":​{"​formattedCitation":"​\\super ​
 +2\\nosupersub{}","​plainCitation":"​2","​noteIndex":​0},"​citationItems":​[{"​id":​617,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​FDC6F69M"​],"​itemData":​{"​id":​617,"​type":"​article-journal","​abstract":"​PbgA ​
 +proteins controls lipopolysaccharide synthesis in Escherichia ​
 +coli.","​container-title":"​Nature","​DOI":"​10.1038/​d41586-020-02256-x","​issue":"​7821","​language":"​en","​license":"​2021 ​
 +Nature","​note":"​Bandiera_abtest:​ a\nCg_type: News And 
 +Views\nnumber:​ 7821\npublisher:​ Nature Publishing Group\nSubject_term: ​
 +Structural biology, ​
 +Microbiology","​page":"​348-349","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of a lipopolysaccharide regulator reveals a road to new 
 +antibiotics","​URL":"​http://​www.nature.com/​articles/​d41586-020-02256-x","​volume":"​584","​author":​[{"​family":"​Bishop","​given":"​Russell ​
 +E."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​2</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Bishop, 2020). </​span><​span ​
 +lang=EN style='​background:​white;​mso-highlight:​white'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Feedback ​
 +inhibition is a key cellular control mechanism where the activity of a key 
 +enzyme within a pathway is inhibited by that same enzyme'​s <span class=GramE>​end ​
 +product</​span>​(s). This control mechanism is essential in controlling and 
 +regulating LPS biosynthesis. It is currently unknown but it has been suspected ​
 +that LPS or a precursor of LPS is the feedback signal responsible for LPS 
 +regulation</​span><​!--[if supportFields]><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION {"​citationID":"​EPagjeP8","​properties":​{"​formattedCitation":"​\\super ​
 +2\\nosupersub{}","​plainCitation":"​2","​noteIndex":​0},"​citationItems":​[{"​id":​617,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​FDC6F69M"​],"​itemData":​{"​id":​617,"​type":"​article-journal","​abstract":"​PbgA ​
 +proteins controls lipopolysaccharide synthesis in Escherichia ​
 +coli.","​container-title":"​Nature","​DOI":"​10.1038/​d41586-020-02256-x","​issue":"​7821","​language":"​en","​license":"​2021 ​
 +Nature","​note":"​Bandiera_abtest:​ a\nCg_type: News And 
 +Views\nnumber:​ 7821\npublisher:​ Nature Publishing Group\nSubject_term: ​
 +Structural biology, ​
 +Microbiology","​page":"​348-349","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of a lipopolysaccharide regulator reveals a road to new 
 +antibiotics","​URL":"​http://​www.nature.com/​articles/​d41586-020-02256-x","​volume":"​584","​author":​[{"​family":"​Bishop","​given":"​Russell ​
 +E."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​2</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Bishop, 2020).<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +mso-no-proof:​yes'><​!--[if gte vml 1]><​v:​shape id="​image4.png"​ o:​spid="​_x0000_i1032" ​
 +type="#​_x0000_t75"​ style='​width:​467.5pt;​height:​200.5pt;​visibility:​visible; ​
 +mso-wrap-style:​square'><​v:​imagedata src="​Wiki%20Draft%20(1)_files/​image005.png"​ o:​title=""/></​v:​shape><​![endif]--><​![if !vml]><​img border=0 width=623 height=267 ​
 +src="​Wiki%20Draft%20(1)_files/​image006.gif"​ v:​shapes="​image4.png"><​![endif]></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span>​There are 3 scenarios involving LPS 
 +biosynthesis that will be discussed:<​span style='​mso-spacerun:​yes'>​  ​
 +</​span>​typical LPS biosynthesis,​ LPS excess, and LPS deficiency. <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Beginning ​
 +with normal LPS synthesis that takes place within the cell cytoplasm, the 
 +enzyme <span class=SpellE>​LpxC</​span>​ controls the biosynthesis of LPS while 
 +utilizing precursors located in the <span class=GramE>​cytoplasm .</​span> ​
 +Following biosynthesis,​ the immature LPS is flipped onto the external surface ​
 +of the inner membrane and is then transported to the outer membrane. The <​span ​
 +class=SpellE>​FtsH</​span>​ enzyme, guided by interactions with <​span ​
 +class=SpellE>​LapB</​span>,​ degrades <span class=SpellE>​LpxC</​span>​ which 
 +disrupts LPS biosynthesis</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​OZBbxks7","​properties":​{"​formattedCitation":"​\\super ​
 +2\\nosupersub{}","​plainCitation":"​2","​noteIndex":​0},"​citationItems":​[{"​id":​617,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​FDC6F69M"​],"​itemData":​{"​id":​617,"​type":"​article-journal","​abstract":"​PbgA ​
 +proteins controls lipopolysaccharide synthesis in Escherichia ​
 +coli.","​container-title":"​Nature","​DOI":"​10.1038/​d41586-020-02256-x","​issue":"​7821","​language":"​en","​license":"​2021 ​
 +Nature","​note":"​Bandiera_abtest:​ a\nCg_type: News And 
 +Views\nnumber:​ 7821\npublisher:​ Nature Publishing Group\nSubject_term: ​
 +Structural biology, ​
 +Microbiology","​page":"​348-349","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of a lipopolysaccharide regulator reveals a road to new 
 +antibiotics","​URL":"​http://​www.nature.com/​articles/​d41586-020-02256-x","​volume":"​584","​author":​[{"​family":"​Bishop","​given":"​Russell ​
 +E."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​2</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Bishop, 2020). However, <​span ​
 +class=SpellE>​Clairefeuille</​span>​ and colleagues show that a protein, <​span ​
 +class=SpellE>​PbgA</​span>,​ inhibits <span class=SpellE>​LapB-FtsH</​span>​ activity ​
 +to promote LPS biosynthesis (2020). <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +mso-no-proof:​yes'><​!--[if gte vml 1]><​v:​shape id="​image8.png"​ o:​spid="​_x0000_i1031" ​
 +type="#​_x0000_t75"​ style='​width:​465.5pt;​height:​326.5pt;​visibility:​visible; ​
 +mso-wrap-style:​square'><​v:​imagedata src="​Wiki%20Draft%20(1)_files/​image007.png"​ o:​title=""/></​v:​shape><​![endif]--><​![if !vml]><​img border=0 width=621 height=435 ​
 +src="​Wiki%20Draft%20(1)_files/​image008.gif"​ v:​shapes="​image8.png"><​![endif]></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Figure ​
 +_. LPS synthesis and degradation of <span class=SpellE>​LpxC</​span>​. The enzyme <​span ​
 +class=SpellE>​LpxC</​span>​ controls the biosynthesis of LPS, utilizing precursors ​
 +located within the <span class=GramE><​i style='​mso-bidi-font-style:​normal'>​E.coli''</​span><​i ​
 +style='​mso-bidi-font-style:​normal'>''​cell cytoplasm. After being flipped to 
 +the external surface of the inner membrane through an ABC transporter,​ the 
 +mature LPS is transported to the outer membrane using LPT machinery. The enzyme ​
 +<span class=SpellE>​FtsH</​span>,​ aided by interactions with the protein <​span ​
 +class=SpellE>​LapB</​span>,​ degrades <span class=SpellE>​LpxC</​span>​. <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +mso-no-proof:​yes'><​!--[if gte vml 1]><​v:​shape id="​image10.png"​ o:​spid="​_x0000_i1030" ​
 +type="#​_x0000_t75"​ style='​width:​467.5pt;​height:​336pt;​visibility:​visible; ​
 +mso-wrap-style:​square'><​v:​imagedata src="​Wiki%20Draft%20(1)_files/​image009.png"​ o:​title="" ​
 +cropright="​494f"/></​v:​shape><​![endif]--><​![if !vml]><​img border=0 width=623 height=448 ​
 +src="​Wiki%20Draft%20(1)_files/​image010.gif"​ v:​shapes="​image10.png"><​![endif]></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Figure ​
 +_. Inhibition of <span class=SpellE>​FtsH-LapB</​span>​ activity. <​span ​
 +class=SpellE>​PbgA</​span>​ is a protein that inhibits the actions of <​span ​
 +class=SpellE>​FtsH-LapB</​span>​ to promote LPS biosynthesis. <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Next, ​
 +when LPS is being synthesized in excessive amounts, it will accumulate on the 
 +external surface of the inner membrane and bind to PbgA</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​8hpU9wVs","​properties":​{"​formattedCitation":"​\\super ​
 +2\\nosupersub{}","​plainCitation":"​2","​noteIndex":​0},"​citationItems":​[{"​id":​617,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​FDC6F69M"​],"​itemData":​{"​id":​617,"​type":"​article-journal","​abstract":"​PbgA ​
 +proteins controls lipopolysaccharide synthesis in Escherichia ​
 +coli.","​container-title":"​Nature","​DOI":"​10.1038/​d41586-020-02256-x","​issue":"​7821","​language":"​en","​license":"​2021 ​
 +Nature","​note":"​Bandiera_abtest:​ a\nCg_type: News And 
 +Views\nnumber:​ 7821\npublisher:​ Nature Publishing Group\nSubject_term: ​
 +Structural biology, Microbiology","​page":"​348-349","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of a lipopolysaccharide regulator reveals a road to new 
 +antibiotics","​URL":"​http://​www.nature.com/​articles/​d41586-020-02256-x","​volume":"​584","​author":​[{"​family":"​Bishop","​given":"​Russell ​
 +E."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​2</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Bishop, 2020). Thereby, <​span ​
 +class=SpellE>​PbgA</​span>​ will lessen its control on the <span class=SpellE>​LapB-FtsH</​span> ​
 +complex activity, allowing for the degradation of <span class=SpellE>​LpxC</​span> ​
 +to restore normal LPS levels.<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +mso-no-proof:​yes'><​!--[if gte vml 1]><​v:​shape id="​image9.png"​ o:​spid="​_x0000_i1029" ​
 +type="#​_x0000_t75"​ style='​width:​468pt;​height:​319.5pt;​visibility:​visible; ​
 +mso-wrap-style:​square'><​v:​imagedata src="​Wiki%20Draft%20(1)_files/​image011.png"​ o:​title=""/></​v:​shape><​![endif]--><​![if !vml]><​img border=0 width=624 height=426 ​
 +src="​Wiki%20Draft%20(1)_files/​image012.gif"​ v:​shapes="​image9.png"><​![endif]></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Figure ​
 +_. LPS excess. When LPS is being synthesized in excess, it will begin to 
 +accumulate on the external surface of the inner membrane and bind to <​span ​
 +class=SpellE>​PbgA</​span>​. Bound to LPS, the protein will relax its inhibitory ​
 +control on <span class=SpellE>​FtsH-LapB</​span>​ to promote <span class=SpellE>​LpxC</​span> ​
 +degradation and therefore, restores normal LPS levels. <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​There ​
 +is a truncation mutation of <span class=SpellE>​PbgA</​span>​ that leads to the 
 +depletion of LPS. This is most likely because the mutant fails to strongly ​
 +inhibit the <span class=SpellE>​LapB-FtsH</​span>​ interaction that degrades <​span ​
 +class=SpellE>​LpxC</​span>​ and thereby, promotes <span class=SpellE>​LpxC</​span> ​
 +degradation</​span><​!--[if supportFields]><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​KLS9MM71","​properties":​{"​formattedCitation":"​\\super ​
 +2\\nosupersub{}","​plainCitation":"​2","​noteIndex":​0},"​citationItems":​[{"​id":​617,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​FDC6F69M"​],"​itemData":​{"​id":​617,"​type":"​article-journal","​abstract":"​PbgA ​
 +proteins controls lipopolysaccharide synthesis in Escherichia ​
 +coli.","​container-title":"​Nature","​DOI":"​10.1038/​d41586-020-02256-x","​issue":"​7821","​language":"​en","​license":"​2021 ​
 +Nature","​note":"​Bandiera_abtest:​ a\nCg_type: News And 
 +Views\nnumber:​ 7821\npublisher:​ Nature Publishing Group\nSubject_term: ​
 +Structural biology, ​
 +Microbiology","​page":"​348-349","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of a lipopolysaccharide regulator reveals a road to new 
 +antibiotics","​URL":"​http://​www.nature.com/​articles/​d41586-020-02256-x","​volume":"​584","​author":​[{"​family":"​Bishop","​given":"​Russell ​
 +E."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​2</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Bishop, 2020). PLs then fill in 
 +the gaps that are left by the LPS in the outer membrane, enabling greasy ​
 +antibiotics and detergents to penetrate local PL bilayers, and large soluble ​
 +compounds to leak through transient boundary defects where LPS and the PL 
 +phases meet</​span><​!--[if supportFields]><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​xpZv7lIL","​properties":​{"​formattedCitation":"​\\super ​
 +2\\nosupersub{}","​plainCitation":"​2","​noteIndex":​0},"​citationItems":​[{"​id":​617,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​FDC6F69M"​],"​itemData":​{"​id":​617,"​type":"​article-journal","​abstract":"​PbgA ​
 +proteins controls lipopolysaccharide synthesis in Escherichia coli.","​container-title":"​Nature","​DOI":"​10.1038/​d41586-020-02256-x","​issue":"​7821","​language":"​en","​license":"​2021 ​
 +Nature","​note":"​Bandiera_abtest:​ a\nCg_type: News And 
 +Views\nnumber:​ 7821\npublisher:​ Nature Publishing Group\nSubject_term: ​
 +Structural biology, Microbiology","​page":"​348-349","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of a lipopolysaccharide regulator reveals a road to new 
 +antibiotics","​URL":"​http://​www.nature.com/​articles/​d41586-020-02256-x","​volume":"​584","​author":​[{"​family":"​Bishop","​given":"​Russell ​
 +E."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​2</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Bishop, 2020).<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +mso-no-proof:​yes'><​!--[if gte vml 1]><​v:​shape id="​image7.png"​ o:​spid="​_x0000_i1028" ​
 +type="#​_x0000_t75"​ style='​width:​455.5pt;​height:​319.5pt;​visibility:​visible; ​
 +mso-wrap-style:​square'><​v:​imagedata src="​Wiki%20Draft%20(1)_files/​image013.png"​ o:​title=""/></​v:​shape><​![endif]--><​![if !vml]><​img border=0 width=607 height=426 ​
 +src="​Wiki%20Draft%20(1)_files/​image014.gif"​ v:​shapes="​image7.png"><​![endif]></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​o:​p></​o:​p></​span><​p class=MsoNormal style='​margin-bottom:​12.0pt'><​span lang=EN style='​font-size: ​
 +12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-spacerun:​yes'>​ </​span>​Figure_. <​span ​
 +class=SpellE>​PbgA</​span>​ truncation mutation leads to LPS depletion. A 
 +depletion of LPS occurs when there is a <span class=SpellE>​PbgA</​span> ​
 +truncation mutation, most likely due to the mutant failing to inhibit <​span ​
 +class=SpellE>​FtsH-LapB</​span>​ strongly enough. Therefore, PLs will attempt to 
 +fill in the gaps left by the depletion of LPS in the outer membrane. This 
 +enables greasy antibiotics and detergents to penetrate as well as large soluble ​
 +compounds to leak through. <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN><​a ​
 +href="​https://​journals.asm.org/​doi/​10.1128/​ecosalplus.ESP-0001-2018"><​span ​
 +style='​font-size:​13.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​1155CC'>​https://​journals.asm.org/​doi/​10.1128/​ecosalplus.ESP-0001-2018</​span></​a></​span><​u><​span ​
 +lang=EN style='​font-size:​13.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman";​color:#​1155CC'><​o:​p></​o:​p></​span></​u><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X:​ <span class=SpellE>​PbgA</​span><​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.1 <span class=SpellE>​PbgA</​span> ​
 +Structure <​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​span class=SpellE><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'>​PbgA</​span></​span><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'>,​ also known as <span class=SpellE>​YejM</​span>,​ is an 
 +essential protein in <i style='​mso-bidi-font-style:​normal'>​E. coli''​ that is 
 +required for regulating LPS synthesis and maintaining membrane homeostasis</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​UlToei0B","​properties":​{"​formattedCitation":"​\\super ​
 +12\\nosupersub{}","​plainCitation":"​12","​noteIndex":​0},"​citationItems":​[{"​id":​628,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​K232PHWH"​],"​itemData":​{"​id":​628,"​type":"​article-journal","​abstract":"​Gram-negative ​
 +bacteria produce an asymmetric outer membrane (OM) that is particularly ​
 +impermeant to many antibiotics and characterized by lipopolysaccharide (LPS) 
 +exclusively at the cell surface. LPS biogenesis remains an ideal target for 
 +therapeutic intervention,​ as disruption could kill bacteria or increase ​
 +sensitivity to existing antibiotics. While it has been known that LPS synthesis ​
 +is regulated by proteolytic control of LpxC, the enzyme that catalyzes the 
 +first committed step of LPS synthesis, it remains unknown which signals direct ​
 +this regulation. New details have been revealed during study of a cryptic ​
 +essential inner membrane protein, YejM. Multiple functions have been proposed ​
 +over the years for YejM, including a controversial hypothesis that it 
 +transports cardiolipin from the inner membrane to the OM. Strong evidence now 
 +indicates that YejM senses LPS in the periplasm and directs proteolytic ​
 +regulation. Here, we discuss the standing literature of YejM and highlight ​
 +exciting new insights into cell envelope ​
 +maintenance.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.02624-20","​issue":"​6","​note":"​publisher: ​
 +American Society for 
 +Microbiology","​page":"​e02624-20","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​Restoring Balance to the Outer Membrane: ​
 +YejM’s Role in LPS Regulation","​title-short":"​Restoring ​
 +Balance to the Outer 
 +Membrane","​URL":"​https://​journals.asm.org/​doi/​10.1128/​mBio.02624-20","​volume":"​11","​author":​[{"​family":"​Simpson","​given":"​Brent ​
 +W."​},​{"​family":"​Douglass","​given":"​Martin ​
 +V."​},​{"​family":"​Trent","​given":"​M. ​
 +Stephen"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​12,​15]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​12</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Simpson et al., 2020). <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​As ​
 +shown in Figure X, <span class=SpellE>​PbgA</​span>​ is an inner membrane protein ​
 +with a five-transmembrane-domain N terminus (residues 1-190) that is essential ​
 +for growth and a nonessential C-terminal periplasmic domain (residues 191-586). ​
 +Nonsense mutations that cause truncations in the periplasmic domain in <​span ​
 +class=SpellE>​PbgA</​span>​ cause phenotypes consistent with defects in outer membrane ​
 +assembly, including reduced LPS/PL ratio, vancomycin sensitivity,​ temperature ​
 +sensitivity,​ and leakage of periplasmic proteins</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​KISnKvoZ","​properties":​{"​formattedCitation":"​\\super ​
 +3\\nosupersub{}","​plainCitation":"​3","​noteIndex":​0},"​citationItems":​[{"​id":​619,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​HWCQ9FUI"​],"​itemData":​{"​id":​619,"​type":"​article-journal","​abstract":"​Gram-negative ​
 +bacteria are surrounded by a complex cell envelope that includes two membranes. ​
 +The outer membrane prevents many drugs from entering these cells and is thus a 
 +major determinant of their intrinsic antibiotic resistance. This barrier ​
 +function is imparted by the asymmetric architecture of the membrane with 
 +lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. ​
 +The LPS and phospholipid synthesis pathways share an intermediate. Proper ​
 +membrane biogenesis therefore requires that the flux through each pathway be 
 +balanced. In Escherichia coli, a major control point in establishing this 
 +balance is the committed step of LPS synthesis mediated by LpxC. Levels of this 
 +enzyme are controlled through its degradation by the inner membrane protease ​
 +FtsH and its presumed adapter protein LapB (YciM). How turnover of LpxC is 
 +controlled has remained unclear for many years. Here, we demonstrate that the 
 +essential protein of unknown function YejM (PbgA) participates in this 
 +regulatory pathway. Suppressors of YejM essentiality were identified in lpxC 
 +and lapB, and LpxC overproduction was shown to be sufficient to allow survival ​
 +of ΔyejM mutants. Furthermore,​ the stability of LpxC was shown to be 
 +reduced in cells lacking YejM, and genetic and physical interactions between ​
 +LapB and YejM were detected. Taken together, our results are consistent with a 
 +model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate ​
 +LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane ​
 +is a major determinant of the intrinsic antibiotic resistance of Gram-negative ​
 +bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid,​ and 
 +the synthesis of these lipid species must be balanced for the membrane to 
 +maintain its barrier function in blocking drug entry. In this study, we 
 +identified an essential protein of unknown function as a key new factor in modulating ​
 +LPS synthesis in the model bacterium Escherichia coli. Our results provide ​
 +novel insight into how this organism and most likely other Gram-negative ​
 +bacteria maintain membrane homeostasis and their intrinsic resistance to 
 +antibiotics.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.00939-20","​issue":"​3","​note":"​publisher: ​
 +American Society for 
 +Microbiology","​page":"​e00939-20","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​An Essential Membrane Protein Modulates ​
 +the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia ​
 +coli","​URL":"​https://​journals.asm.org/​doi/​10.1128/​mBio.00939-20","​volume":"​11","​author":​[{"​family":"​Fivenson","​given":"​Elayne ​
 +M."​},​{"​family":"​Bernhardt","​given":"​Thomas ​
 +G."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​5,​19]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​3</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Fivenson</​span> ​
 +& Bernhardt, 2020). <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +mso-no-proof:​yes'><​!--[if gte vml 1]><​v:​shape id="​image6.png"​ o:​spid="​_x0000_i1027" ​
 +type="#​_x0000_t75"​ style='​width:​269pt;​height:​259pt;​visibility:​visible; ​
 +mso-wrap-style:​square'><​v:​imagedata src="​Wiki%20Draft%20(1)_files/​image015.png"​ o:​title=""/></​v:​shape><​![endif]--><​![if !vml]><​img border=0 width=359 height=345 ​
 +src="​Wiki%20Draft%20(1)_files/​image016.gif"​ v:​shapes="​image6.png"><​![endif]></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​Figure X: <span class=SpellE>​Pymol</​span> ​
 +structure of <span class=SpellE>​PbgA</​span>​. <​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Crystal ​
 +structure of <span class=SpellE>​PbgA</​span>,​ an essential inner transmembrane ​
 +protein in <i style='​mso-bidi-font-style:​normal'>​E. coli''​ that is used for 
 +regulating LPS synthesis and outer membrane homeostasis. The C-terminal ​
 +periplasmic domain is depicted in green. The N-terminal domain is a 
 +five-transmembrane domain depicted in red, yellow, orange, purple, and cyan. <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.2 <span class=SpellE>​PbgA</​span> ​
 +protein similarity <​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span class=SpellE><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'>​PbgA</​span></​span><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'>​ is structurally related to <span class=SpellE>​LtaS</​span>, ​
 +an enzyme found in many gram-positive bacteria that synthesizes lipoteichoic ​
 +acids. <span class=SpellE>​PbgA</​span>,​ like <span class=SpellE>​LtaS</​span>, ​
 +contains a hydrophobic binding pocket in its periplasmic domain that is required ​
 +for protein activity. However, the crystal structure of the <span class=SpellE>​PbgA</​span> ​
 +domain indicates that it lacks residues required for <span class=SpellE>​LtaS</​span> ​
 +catalytic activity, so it is unlikely to have a homologous enzymatic function</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​Igh9S5xC","​properties":​{"​formattedCitation":"​\\super ​
 +3\\nosupersub{}","​plainCitation":"​3","​noteIndex":​0},"​citationItems":​[{"​id":​619,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​HWCQ9FUI"​],"​itemData":​{"​id":​619,"​type":"​article-journal","​abstract":"​Gram-negative ​
 +bacteria are surrounded by a complex cell envelope that includes two membranes. ​
 +The outer membrane prevents many drugs from entering these cells and is thus a 
 +major determinant of their intrinsic antibiotic resistance. This barrier ​
 +function is imparted by the asymmetric architecture of the membrane with 
 +lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner 
 +leaflet. The LPS and phospholipid synthesis pathways share an intermediate. ​
 +Proper membrane biogenesis therefore requires that the flux through each 
 +pathway be balanced. In Escherichia coli, a major control point in establishing ​
 +this balance is the committed step of LPS synthesis mediated by LpxC. Levels of 
 +this enzyme are controlled through its degradation by the inner membrane ​
 +protease FtsH and its presumed adapter protein LapB (YciM). How turnover of 
 +LpxC is controlled has remained unclear for many years. Here, we demonstrate ​
 +that the essential protein of unknown function YejM (PbgA) participates in this 
 +regulatory pathway. Suppressors of YejM essentiality were identified in lpxC 
 +and lapB, and LpxC overproduction was shown to be sufficient to allow survival ​
 +of ΔyejM mutants. Furthermore,​ the stability of LpxC was shown to be 
 +reduced in cells lacking YejM, and genetic and physical interactions between ​
 +LapB and YejM were detected. Taken together, our results are consistent with a 
 +model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate ​
 +LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane ​
 +is a major determinant of the intrinsic antibiotic resistance of Gram-negative ​
 +bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid,​ and 
 +the synthesis of these lipid species must be balanced for the membrane to 
 +maintain its barrier function in blocking drug entry. In this study, we 
 +identified an essential protein of unknown function as a key new factor in 
 +modulating LPS synthesis in the model bacterium Escherichia coli. Our results ​
 +provide novel insight into how this organism and most likely other 
 +Gram-negative bacteria maintain membrane homeostasis and their intrinsic ​
 +resistance to 
 +antibiotics.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.00939-20","​issue":"​3","​note":"​publisher: ​
 +American Society for 
 +Microbiology","​page":"​e00939-20","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​An Essential Membrane Protein Modulates ​
 +the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia ​
 +coli","​URL":"​https://​journals.asm.org/​doi/​10.1128/​mBio.00939-20","​volume":"​11","​author":​[{"​family":"​Fivenson","​given":"​Elayne ​
 +M."​},​{"​family":"​Bernhardt","​given":"​Thomas ​
 +G."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​5,​19]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​3</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Fivenson</​span> ​
 +& Bernhardt, 2020).<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.3 Initial Proposed Function of <​span ​
 +class=SpellE>​PbgA</​span><​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​In ​
 +<i style='​mso-bidi-font-style:​normal'>​S. Typhimurium'',​ cells that use a 
 +two-component regulatory system, <span class=SpellE>​PhoPQ</​span>,​ require <​span ​
 +class=SpellE>​PbgA</​span>​ to coordinate this process. The <span class=SpellE>​PhoPQ</​span> ​
 +system induces changes to the outer membrane to protect cells from infection by 
 +sensing changes in the environment. One of the changes that occurs is an 
 +increase in the content of the PL, cardiolipin (CL). <span class=SpellE>​PbgA</​span> ​
 +was found to bind to CL in vitro and since the deletion of <span class=SpellE>​PbgA</​span> ​
 +showed no increase in CL content, it led to the assumption that it acts as a 
 +transporter that brings CL from the inner membrane to the outer membrane</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​uTPTGZpN","​properties":​{"​formattedCitation":"​\\super ​
 +12\\nosupersub{}","​plainCitation":"​12","​noteIndex":​0},"​citationItems":​[{"​id":​628,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​K232PHWH"​],"​itemData":​{"​id":​628,"​type":"​article-journal","​abstract":"​Gram-negative ​
 +bacteria produce an asymmetric outer membrane (OM) that is particularly ​
 +impermeant to many antibiotics and characterized by lipopolysaccharide (LPS) 
 +exclusively at the cell surface. LPS biogenesis remains an ideal target for 
 +therapeutic intervention,​ as disruption could kill bacteria or increase ​
 +sensitivity to existing antibiotics. While it has been known that LPS synthesis ​
 +is regulated by proteolytic control of LpxC, the enzyme that catalyzes the 
 +first committed step of LPS synthesis, it remains unknown which signals direct ​
 +this regulation. New details have been revealed during study of a cryptic ​
 +essential inner membrane protein, YejM. Multiple functions have been proposed ​
 +over the years for YejM, including a controversial hypothesis that it 
 +transports cardiolipin from the inner membrane to the OM. Strong evidence now 
 +indicates that YejM senses LPS in the periplasm and directs proteolytic ​
 +regulation. Here, we discuss the standing literature of YejM and highlight ​
 +exciting new insights into cell envelope ​
 +maintenance.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.02624-20","​issue":"​6","​note":"​publisher: ​
 +American Society for Microbiology","​page":"​e02624-20","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​Restoring Balance to the Outer Membrane: ​
 +YejM’s Role in LPS Regulation","​title-short":"​Restoring ​
 +Balance to the Outer Membrane","​URL":"​https://​journals.asm.org/​doi/​10.1128/​mBio.02624-20","​volume":"​11","​author":​[{"​family":"​Simpson","​given":"​Brent ​
 +W."​},​{"​family":"​Douglass","​given":"​Martin ​
 +V."​},​{"​family":"​Trent","​given":"​M. ​
 +Stephen"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​12,​15]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​12</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Simpson et al., 2020). <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​However, ​
 +other studies have shown that <span class=SpellE>​PbgA</​span>​ may not act as a 
 +cardiolipin transporter as it lacks an outer membrane partner while other 
 +complexes that transport substrates from the inner membrane to the outer 
 +membrane have inner membrane, periplasmic,​ and outer membrane components. ​
 +Additionally,​ if <span class=SpellE>​PbgA</​span>​ were essential for cardiolipin ​
 +synthesis, then it would be expected that cardiolipin deficiency would lead to 
 +toxic levels of <span class=SpellE>​PbgA</​span>,​ but this does not occur. ​
 +Finally, because <span class=SpellE>​PbgA</​span>​ is known to have an impact on 
 +outer membrane permeability,​ but truncations of <span class=SpellE>​PbgA</​span> ​
 +periplasmic domain show outer membrane permeability defects, indicating that 
 +both the inner membrane and periplasmic domain of <span class=SpellE>​PbgA</​span> ​
 +are involved in the same function. Therefore, it is unlikely that <​span ​
 +class=SpellE>​PbgA</​span>​ is involved in cardiolipin transport</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​FLnydd47","​properties":​{"​formattedCitation":"​\\super ​
 +12\\nosupersub{}","​plainCitation":"​12","​noteIndex":​0},"​citationItems":​[{"​id":​628,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​K232PHWH"​],"​itemData":​{"​id":​628,"​type":"​article-journal","​abstract":"​Gram-negative ​
 +bacteria produce an asymmetric outer membrane (OM) that is particularly ​
 +impermeant to many antibiotics and characterized by lipopolysaccharide (LPS) 
 +exclusively at the cell surface. LPS biogenesis remains an ideal target for 
 +therapeutic intervention,​ as disruption could kill bacteria or increase ​
 +sensitivity to existing antibiotics. While it has been known that LPS synthesis ​
 +is regulated by proteolytic control of LpxC, the enzyme that catalyzes the 
 +first committed step of LPS synthesis, it remains unknown which signals direct ​
 +this regulation. New details have been revealed during study of a cryptic ​
 +essential inner membrane protein, YejM. Multiple functions have been proposed ​
 +over the years for YejM, including a controversial hypothesis that it 
 +transports cardiolipin from the inner membrane to the OM. Strong evidence now 
 +indicates that YejM senses LPS in the periplasm and directs proteolytic ​
 +regulation. Here, we discuss the standing literature of YejM and highlight ​
 +exciting new insights into cell envelope ​
 +maintenance.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.02624-20","​issue":"​6","​note":"​publisher: ​
 +American Society for 
 +Microbiology","​page":"​e02624-20","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​Restoring Balance to the Outer Membrane: ​
 +YejM’s Role in LPS Regulation","​title-short":"​Restoring ​
 +Balance to the Outer Membrane","​URL":"​https://​journals.asm.org/​doi/​10.1128/​mBio.02624-20","​volume":"​11","​author":​[{"​family":"​Simpson","​given":"​Brent ​
 +W."​},​{"​family":"​Douglass","​given":"​Martin ​
 +V."​},​{"​family":"​Trent","​given":"​M. ​
 +Stephen"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​12,​15]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​12</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Simpson et al., 2020). <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.4 Novel Discovery of <​span ​
 +class=SpellE>​PbgA</​span>​ Function<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​A ​
 +recent study suggests that <span class=SpellE>​PbgA</​span>​ serves a larger but 
 +undefined role in envelope assembly, such as preventing excessive turnover of <​span ​
 +class=SpellE>​LpxC</​span>​ and promoting <span class=SpellE>​LpxC</​span> ​
 +accumulation by shielding it from the <span class=SpellE>​FtsH-LapB</​span> ​
 +proteolytic system. They also found that the N-terminal transmembrane of <​span ​
 +class=SpellE>​PbgA</​span>​ alone interacts with the <span class=SpellE>​LapB</​span> ​
 +component of the <span class=SpellE>​FtsH-LapB</​span>​ proteolytic system to 
 +promote <span class=SpellE>​LpxC</​span>​ accumulation</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​OfDNMfny","​properties":​{"​formattedCitation":"​\\super ​
 +3\\nosupersub{}","​plainCitation":"​3","​noteIndex":​0},"​citationItems":​[{"​id":​619,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​HWCQ9FUI"​],"​itemData":​{"​id":​619,"​type":"​article-journal","​abstract":"​Gram-negative ​
 +bacteria are surrounded by a complex cell envelope that includes two membranes. ​
 +The outer membrane prevents many drugs from entering these cells and is thus a 
 +major determinant of their intrinsic antibiotic resistance. This barrier ​
 +function is imparted by the asymmetric architecture of the membrane with 
 +lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner 
 +leaflet. The LPS and phospholipid synthesis pathways share an intermediate. ​
 +Proper membrane biogenesis therefore requires that the flux through each 
 +pathway be balanced. In Escherichia coli, a major control point in establishing ​
 +this balance is the committed step of LPS synthesis mediated by LpxC. Levels of 
 +this enzyme are controlled through its degradation by the inner membrane ​
 +protease FtsH and its presumed adapter protein LapB (YciM). How turnover of 
 +LpxC is controlled has remained unclear for many years. Here, we demonstrate ​
 +that the essential protein of unknown function YejM (PbgA) participates in this 
 +regulatory pathway. Suppressors of YejM essentiality were identified in lpxC 
 +and lapB, and LpxC overproduction was shown to be sufficient to allow survival ​
 +of ΔyejM mutants. Furthermore,​ the stability of LpxC was shown to be 
 +reduced in cells lacking YejM, and genetic and physical interactions between ​
 +LapB and YejM were detected. Taken together, our results are consistent with a 
 +model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate ​
 +LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane ​
 +is a major determinant of the intrinsic antibiotic resistance of Gram-negative ​
 +bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid,​ and 
 +the synthesis of these lipid species must be balanced for the membrane to 
 +maintain its barrier function in blocking drug entry. In this study, we 
 +identified an essential protein of unknown function as a key new factor in 
 +modulating LPS synthesis in the model bacterium Escherichia coli. Our results ​
 +provide novel insight into how this organism and most likely other 
 +Gram-negative bacteria maintain membrane homeostasis and their intrinsic ​
 +resistance to 
 +antibiotics.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.00939-20","​issue":"​3","​note":"​publisher: ​
 +American Society for 
 +Microbiology","​page":"​e00939-20","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​An Essential Membrane Protein Modulates ​
 +the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia ​
 +coli","​URL":"​https://​journals.asm.org/​doi/​10.1128/​mBio.00939-20","​volume":"​11","​author":​[{"​family":"​Fivenson","​given":"​Elayne ​
 +M."​},​{"​family":"​Bernhardt","​given":"​Thomas ​
 +G."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​5,​19]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​3</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Fivenson</​span> ​
 +& Bernhardt, 2020).<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​span ​
 +style='​mso-spacerun:​yes'>​ </​span><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​Polymyxin Antibiotics and Antibiotic ​
 +Resistance:<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.1. Polymyxin Antibiotics<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Polymyxins ​
 +are an important class of antibiotics used in the treatment of systemic ​
 +infections caused by multidrug-resistant gram-negative bacteria such as 
 +pseudomonas aeruginosa</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​wRfcvQq5","​properties":​{"​formattedCitation":"​\\super ​
 +13\\nosupersub{}","​plainCitation":"​13","​noteIndex":​0},"​citationItems":​[{"​id":​608,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​U2DBWKJG"​],"​itemData":​{"​id":​608,"​type":"​chapter","​abstract":"​Polymyxins ​
 +are a class of medications used in the management and treatment of systemic ​
 +infections caused by susceptible strains of multidrug-resistant organisms such 
 +as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This 
 +activity reviews the indications,​ action, and contraindications for polymyxin ​
 +as a valuable agent in the treatment of multidrug-resistant infections. This 
 +activity will highlight the mechanism of action, adverse event profile, and 
 +other key factors pertinent for members of the interprofessional team in the 
 +treatment of patients with polymyxins who are infected by susceptible strains ​
 +of gram-negative pathogens resistant most of the other antibiotic ​
 +classes.","​call-number":"​NBK557540","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island ​
 +(FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID: ​
 +32491472","​publisher":"​StatPearls ​
 +Publishing","​publisher-place":"​Treasure Island ​
 +(FL)","​source":"​PubMed","​title":"​Polymyxin","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK557540/","​author":​[{"​family":"​Shatri","​given":"​Genti"​},​{"​family":"​Tadi","​given":"​Prasanna"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​13</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Shatri</​span> ​
 +& <span class=SpellE>​Tadi</​span>,​ 2022). Currently, these antibiotics are 
 +used as a last line of treatment against such infections</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​n7wlnoFI","​properties":​{"​formattedCitation":"​\\super ​
 +13\\nosupersub{}","​plainCitation":"​13","​noteIndex":​0},"​citationItems":​[{"​id":​608,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​U2DBWKJG"​],"​itemData":​{"​id":​608,"​type":"​chapter","​abstract":"​Polymyxins ​
 +are a class of medications used in the management and treatment of systemic ​
 +infections caused by susceptible strains of multidrug-resistant organisms such 
 +as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This 
 +activity reviews the indications,​ action, and contraindications for polymyxin as 
 +a valuable agent in the treatment of multidrug-resistant infections. This 
 +activity will highlight the mechanism of action, adverse event profile, and 
 +other key factors pertinent for members of the interprofessional team in the 
 +treatment of patients with polymyxins who are infected by susceptible strains ​
 +of gram-negative pathogens resistant most of the other antibiotic ​
 +classes.","​call-number":"​NBK557540","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island ​
 +(FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID: ​
 +32491472","​publisher":"​StatPearls ​
 +Publishing","​publisher-place":"​Treasure Island ​
 +(FL)","​source":"​PubMed","​title":"​Polymyxin","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK557540/","​author":​[{"​family":"​Shatri","​given":"​Genti"​},​{"​family":"​Tadi","​given":"​Prasanna"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​13</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Shatri</​span> ​
 +& <span class=SpellE>​Tadi</​span>,​ 2022). The main drugs in clinical use 
 +within this antibiotic class are Polymyxin B and Polymyxin E (also called ​
 +colistin), which target infections of the urinary tract, meninges, and 
 +bloodstream</​span><​!--[if supportFields]><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​tYAD01ia","​properties":​{"​formattedCitation":"​\\super ​
 +13\\nosupersub{}","​plainCitation":"​13","​noteIndex":​0},"​citationItems":​[{"​id":​608,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​U2DBWKJG"​],"​itemData":​{"​id":​608,"​type":"​chapter","​abstract":"​Polymyxins ​
 +are a class of medications used in the management and treatment of systemic ​
 +infections caused by susceptible strains of multidrug-resistant organisms such 
 +as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This 
 +activity reviews the indications,​ action, and contraindications for polymyxin ​
 +as a valuable agent in the treatment of multidrug-resistant infections. This 
 +activity will highlight the mechanism of action, adverse event profile, and 
 +other key factors pertinent for members of the interprofessional team in the 
 +treatment of patients with polymyxins who are infected by susceptible strains ​
 +of gram-negative pathogens resistant most of the other antibiotic ​
 +classes.","​call-number":"​NBK557540","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island ​
 +(FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID: ​
 +32491472","​publisher":"​StatPearls Publishing","​publisher-place":"​Treasure ​
 +Island ​
 +(FL)","​source":"​PubMed","​title":"​Polymyxin","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK557540/","​author":​[{"​family":"​Shatri","​given":"​Genti"​},​{"​family":"​Tadi","​given":"​Prasanna"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​13</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Shatri</​span> ​
 +& <span class=SpellE>​Tadi</​span>,​ 2022). <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.2. Mechanism of Action of Colistin<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Polymyxins ​
 +target the lipid A core of LPS</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​7ZVsLxVx","​properties":​{"​formattedCitation":"​\\super ​
 +14\\nosupersub{}","​plainCitation":"​14","​noteIndex":​0},"​citationItems":​[{"​id":​612,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​S5FNUZAL"​],"​itemData":​{"​id":​612,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +(LPS) resides in the outer membrane of Gram-negative bacteria where it is 
 +responsible for barrier function1,​2. LPS can cause death as a result of septic ​
 +shock, and its lipid A core is the target of polymyxin antibiotics3,​4. Despite ​
 +the clinical importance of polymyxins and the emergence of multidrug resistant ​
 +strains5, our understanding of the bacterial factors that regulate LPS 
 +biogenesis is incomplete. Here we characterize the inner membrane protein PbgA 
 +and report that its depletion attenuates the virulence of Escherichia coli by 
 +reducing levels of LPS and outer membrane integrity. In contrast to previous ​
 +claims that PbgA functions as a cardiolipin transporter6–9,​ our structural ​
 +analyses and physiological studies identify a lipid A-binding motif along the 
 +periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides ​
 +selectively bind to LPS in vitro and inhibit the growth of diverse ​
 +Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, ​
 +genetic and pharmacological experiments uncover a model in which direct ​
 +periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by 
 +regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12. ​
 +In summary, we find that PbgA has an unexpected but essential role in the 
 +regulation of LPS biogenesis, presents a new structural basis for the selective ​
 +recognition of lipids, and provides opportunities for future antibiotic ​
 +discovery.","​container-title":"​Nature","​DOI":"​10.1038/​s41586-020-2597-x","​ISSN":"​1476-4687","​issue":"​7821","​language":"​en","​license":"​2020 ​
 +The Author(s), under exclusive licence to Springer Nature ​
 +Limited","​note":"​number:​ 7821\npublisher:​ Nature Publishing ​
 +Group","​page":"​479-483","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of the essential inner membrane lipopolysaccharide–PbgA ​
 +complex","​URL":"​http://​www.nature.com/​articles/​s41586-020-2597-x","​volume":"​584","​author":​[{"​family":"​Clairfeuille","​given":"​Thomas"​},​{"​family":"​Buchholz","​given":"​Kerry ​
 +R."​},​{"​family":"​Li","​given":"​Qingling"​},​{"​family":"​Verschueren","​given":"​Erik"​},​{"​family":"​Liu","​given":"​Peter"​},​{"​family":"​Sangaraju","​given":"​Dewakar"​},​{"​family":"​Park","​given":"​Summer"​},​{"​family":"​Noland","​given":"​Cameron ​
 +L."​},​{"​family":"​Storek","​given":"​Kelly ​
 +M."​},​{"​family":"​Nickerson","​given":"​Nicholas ​
 +N."​},​{"​family":"​Martin","​given":"​Lynn"​},​{"​family":"​Dela ​
 +Vega","​given":"​Trisha"​},​{"​family":"​Miu","​given":"​Anh"​},​{"​family":"​Reeder","​given":"​Janina"​},​{"​family":"​Ruiz-Gonzalez","​given":"​Maria"​},​{"​family":"​Swem","​given":"​Danielle"​},​{"​family":"​Han","​given":"​Guanghui"​},​{"​family":"​DePonte","​given":"​Daniel ​
 +P."​},​{"​family":"​Hunter","​given":"​Mark ​
 +S."​},​{"​family":"​Gati","​given":"​Cornelius"​},​{"​family":"​Shahidi-Latham","​given":"​Sheerin"​},​{"​family":"​Xu","​given":"​Min"​},​{"​family":"​Skelton","​given":"​Nicholas"​},​{"​family":"​Sellers","​given":"​Benjamin ​
 +D."​},​{"​family":"​Skippington","​given":"​Elizabeth"​},​{"​family":"​Sandoval","​given":"​Wendy"​},​{"​family":"​Hanan","​given":"​Emily ​
 +J."​},​{"​family":"​Payandeh","​given":"​Jian"​},​{"​family":"​Rutherford","​given":"​Steven ​
 +T."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​14</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Clairfeuille</​span> ​
 +et al., 2020). These antibiotics destabilize the PLs and LPS present in the 
 +outer membrane of gram-negative bacteria</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION {"​citationID":"​c9oHqDO2","​properties":​{"​formattedCitation":"​\\super ​
 +13\\nosupersub{}","​plainCitation":"​13","​noteIndex":​0},"​citationItems":​[{"​id":​608,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​U2DBWKJG"​],"​itemData":​{"​id":​608,"​type":"​chapter","​abstract":"​Polymyxins ​
 +are a class of medications used in the management and treatment of systemic ​
 +infections caused by susceptible strains of multidrug-resistant organisms such 
 +as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This activity ​
 +reviews the indications,​ action, and contraindications for polymyxin as a 
 +valuable agent in the treatment of multidrug-resistant infections. This 
 +activity will highlight the mechanism of action, adverse event profile, and 
 +other key factors pertinent for members of the interprofessional team in the 
 +treatment of patients with polymyxins who are infected by susceptible strains ​
 +of gram-negative pathogens resistant most of the other antibiotic ​
 +classes.","​call-number":"​NBK557540","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island ​
 +(FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID: ​
 +32491472","​publisher":"​StatPearls Publishing","​publisher-place":"​Treasure ​
 +Island ​
 +(FL)","​source":"​PubMed","​title":"​Polymyxin","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK557540/","​author":​[{"​family":"​Shatri","​given":"​Genti"​},​{"​family":"​Tadi","​given":"​Prasanna"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​13</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Shatri</​span> ​
 +& <span class=SpellE>​Tadi</​span>,​ 2022). Since polymyxins are positively ​
 +charged, they electrostatically interact with the phosphate groups on both of 
 +the negatively charged phosphorylated sugars that make up lipid A</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​Htyh6yVV","​properties":​{"​formattedCitation":"​\\super ​
 +13\\nosupersub{}","​plainCitation":"​13","​noteIndex":​0},"​citationItems":​[{"​id":​608,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​U2DBWKJG"​],"​itemData":​{"​id":​608,"​type":"​chapter","​abstract":"​Polymyxins ​
 +are a class of medications used in the management and treatment of systemic ​
 +infections caused by susceptible strains of multidrug-resistant organisms such 
 +as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This 
 +activity reviews the indications,​ action, and contraindications for polymyxin ​
 +as a valuable agent in the treatment of multidrug-resistant infections. This 
 +activity will highlight the mechanism of action, adverse event profile, and 
 +other key factors pertinent for members of the interprofessional team in the 
 +treatment of patients with polymyxins who are infected by susceptible strains ​
 +of gram-negative pathogens resistant most of the other antibiotic ​
 +classes.","​call-number":"​NBK557540","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island (FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID:​ 32491472","​publisher":"​StatPearls ​
 +Publishing","​publisher-place":"​Treasure Island ​
 +(FL)","​source":"​PubMed","​title":"​Polymyxin","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK557540/","​author":​[{"​family":"​Shatri","​given":"​Genti"​},​{"​family":"​Tadi","​given":"​Prasanna"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​13</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Shatri</​span> ​
 +& <span class=SpellE>​Tadi</​span>,​ 2022). This causes the divalent cations ​
 +(such as calcium and magnesium) from the phosphate groups within the membrane ​
 +lipids to become displaced, creating increased permeability</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​dd4opF7M","​properties":​{"​formattedCitation":"​\\super ​
 +13\\nosupersub{}","​plainCitation":"​13","​noteIndex":​0},"​citationItems":​[{"​id":​608,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​U2DBWKJG"​],"​itemData":​{"​id":​608,"​type":"​chapter","​abstract":"​Polymyxins ​
 +are a class of medications used in the management and treatment of systemic ​
 +infections caused by susceptible strains of multidrug-resistant organisms such 
 +as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This activity ​
 +reviews the indications,​ action, and contraindications for polymyxin as a 
 +valuable agent in the treatment of multidrug-resistant infections. This 
 +activity will highlight the mechanism of action, adverse event profile, and 
 +other key factors pertinent for members of the interprofessional team in the 
 +treatment of patients with polymyxins who are infected by susceptible strains ​
 +of gram-negative pathogens resistant most of the other antibiotic ​
 +classes.","​call-number":"​NBK557540","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island ​
 +(FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID: ​
 +32491472","​publisher":"​StatPearls Publishing","​publisher-place":"​Treasure ​
 +Island ​
 +(FL)","​source":"​PubMed","​title":"​Polymyxin","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK557540/","​author":​[{"​family":"​Shatri","​given":"​Genti"​},​{"​family":"​Tadi","​given":"​Prasanna"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​13</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Shatri</​span> ​
 +& <span class=SpellE>​Tadi</​span>,​ 2022). This leads to the outer membrane ​
 +becoming disrupted, allowing small molecules and other intracellular contents ​
 +to leak out of the cell and cause bacterial cell death</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​KQVXUWc2","​properties":​{"​formattedCitation":"​\\super ​
 +13\\nosupersub{}","​plainCitation":"​13","​noteIndex":​0},"​citationItems":​[{"​id":​608,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​U2DBWKJG"​],"​itemData":​{"​id":​608,"​type":"​chapter","​abstract":"​Polymyxins ​
 +are a class of medications used in the management and treatment of systemic ​
 +infections caused by susceptible strains of multidrug-resistant organisms such 
 +as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This 
 +activity reviews the indications,​ action, and contraindications for polymyxin ​
 +as a valuable agent in the treatment of multidrug-resistant infections. This 
 +activity will highlight the mechanism of action, adverse event profile, and 
 +other key factors pertinent for members of the interprofessional team in the 
 +treatment of patients with polymyxins who are infected by susceptible strains of 
 +gram-negative pathogens resistant most of the other antibiotic ​
 +classes.","​call-number":"​NBK557540","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island (FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID:​ 32491472","​publisher":"​StatPearls ​
 +Publishing","​publisher-place":"​Treasure Island ​
 +(FL)","​source":"​PubMed","​title":"​Polymyxin","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK557540/","​author":​[{"​family":"​Shatri","​given":"​Genti"​},​{"​family":"​Tadi","​given":"​Prasanna"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​13</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Shatri</​span> ​
 +& <span class=SpellE>​Tadi</​span>,​ 2022). <​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​In ​
 +addition, polymyxins can neutralize the endotoxin effect of pathogens</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​jz6XGLzg","​properties":​{"​formattedCitation":"​\\super ​
 +13\\nosupersub{}","​plainCitation":"​13","​noteIndex":​0},"​citationItems":​[{"​id":​608,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​U2DBWKJG"​],"​itemData":​{"​id":​608,"​type":"​chapter","​abstract":"​Polymyxins ​
 +are a class of medications used in the management and treatment of systemic ​
 +infections caused by susceptible strains of multidrug-resistant organisms such 
 +as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This activity ​
 +reviews the indications,​ action, and contraindications for polymyxin as a 
 +valuable agent in the treatment of multidrug-resistant infections. This 
 +activity will highlight the mechanism of action, adverse event profile, and 
 +other key factors pertinent for members of the interprofessional team in the 
 +treatment of patients with polymyxins who are infected by susceptible strains ​
 +of gram-negative pathogens resistant most of the other antibiotic ​
 +classes.","​call-number":"​NBK557540","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island ​
 +(FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID: ​
 +32491472","​publisher":"​StatPearls ​
 +Publishing","​publisher-place":"​Treasure Island ​
 +(FL)","​source":"​PubMed","​title":"​Polymyxin","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK557540/","​author":​[{"​family":"​Shatri","​given":"​Genti"​},​{"​family":"​Tadi","​given":"​Prasanna"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​13</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Shatri</​span> ​
 +& <span class=SpellE>​Tadi</​span>,​ 2022). Since the endotoxic part of 
 +gram-negative bacteria corresponds to the lipid A core, polymyxins can bind to 
 +the LPS that was released as a result of cellular death</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​Clnnlrv8","​properties":​{"​formattedCitation":"​\\super ​
 +13\\nosupersub{}","​plainCitation":"​13","​noteIndex":​0},"​citationItems":​[{"​id":​608,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​U2DBWKJG"​],"​itemData":​{"​id":​608,"​type":"​chapter","​abstract":"​Polymyxins ​
 +are a class of medications used in the management and treatment of systemic ​
 +infections caused by susceptible strains of multidrug-resistant organisms such 
 +as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This 
 +activity reviews the indications,​ action, and contraindications for polymyxin ​
 +as a valuable agent in the treatment of multidrug-resistant infections. This 
 +activity will highlight the mechanism of action, adverse event profile, and 
 +other key factors pertinent for members of the interprofessional team in the 
 +treatment of patients with polymyxins who are infected by susceptible strains ​
 +of gram-negative pathogens resistant most of the other antibiotic ​
 +classes.","​call-number":"​NBK557540","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island (FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID: ​
 +32491472","​publisher":"​StatPearls ​
 +Publishing","​publisher-place":"​Treasure Island ​
 +(FL)","​source":"​PubMed","​title":"​Polymyxin","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK557540/","​author":​[{"​family":"​Shatri","​given":"​Genti"​},​{"​family":"​Tadi","​given":"​Prasanna"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​13</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Shatri</​span> ​
 +& <span class=SpellE>​Tadi</​span>,​ 2022). This results in the neutralization ​
 +of the endotoxin, preventing its effects in circulation</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​PhtPbk2K","​properties":​{"​formattedCitation":"​\\super ​
 +13\\nosupersub{}","​plainCitation":"​13","​noteIndex":​0},"​citationItems":​[{"​id":​608,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​U2DBWKJG"​],"​itemData":​{"​id":​608,"​type":"​chapter","​abstract":"​Polymyxins ​
 +are a class of medications used in the management and treatment of systemic ​
 +infections caused by susceptible strains of multidrug-resistant organisms such 
 +as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This 
 +activity reviews the indications,​ action, and contraindications for polymyxin ​
 +as a valuable agent in the treatment of multidrug-resistant infections. This 
 +activity will highlight the mechanism of action, adverse event profile, and 
 +other key factors pertinent for members of the interprofessional team in the 
 +treatment of patients with polymyxins who are infected by susceptible strains ​
 +of gram-negative pathogens resistant most of the other antibiotic ​
 +classes.","​call-number":"​NBK557540","​container-title":"​StatPearls","​event-place":"​Treasure ​
 +Island ​
 +(FL)","​language":"​eng","​license":"​Copyright ​
 +© 2022, StatPearls Publishing LLC.","​note":"​PMID: ​
 +32491472","​publisher":"​StatPearls ​
 +Publishing","​publisher-place":"​Treasure Island ​
 +(FL)","​source":"​PubMed","​title":"​Polymyxin","​URL":"​http://​www.ncbi.nlm.nih.gov/​books/​NBK557540/","​author":​[{"​family":"​Shatri","​given":"​Genti"​},​{"​family":"​Tadi","​given":"​Prasanna"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2022"​]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​13</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Shatri</​span> ​
 +& <span class=SpellE>​Tadi</​span>,​ 2022).<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +mso-no-proof:​yes'><​!--[if gte vml 1]><​v:​shape id="​image3.png"​ o:​spid="​_x0000_i1026" ​
 +type="#​_x0000_t75"​ style='​width:​457pt;​height:​217.5pt;​visibility:​visible; ​
 +mso-wrap-style:​square'><​v:​imagedata src="​Wiki%20Draft%20(1)_files/​image017.png"​ o:​title="" ​
 +cropbottom="​1110f"​ cropleft="​630f"​ cropright="​528f"/></​v:​shape><​![endif]--><​![if !vml]><​img border=0 width=609 height=290 ​
 +src="​Wiki%20Draft%20(1)_files/​image018.gif"​ v:​shapes="​image3.png"><​![endif]></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​Figure X:</​span>'''<​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ Colistin electrostatically ​
 +interacts with the lipid A core of LPS, creating a disruption of the membrane ​
 +and allowing small molecules to leak out of the cell.<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​X.3. Antibiotic Resistance<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Polymyxins ​
 +are an extremely important and clinically relevant class of drugs since they 
 +are the last line of <span class=SpellE>​defence</​span>​ against gram-negative ​
 +bacteria that are resistant to all other antibiotics</​span><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​1nRHZKva","​properties":​{"​formattedCitation":"​\\super ​
 +14\\nosupersub{}","​plainCitation":"​14","​noteIndex":​0},"​citationItems":​[{"​id":​612,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​S5FNUZAL"​],"​itemData":​{"​id":​612,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +(LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible ​
 +for barrier function1,​2. LPS can cause death as a result of septic shock, and 
 +its lipid A core is the target of polymyxin antibiotics3,​4. Despite the 
 +clinical importance of polymyxins and the emergence of multidrug resistant ​
 +strains5, our understanding of the bacterial factors that regulate LPS 
 +biogenesis is incomplete. Here we characterize the inner membrane protein PbgA 
 +and report that its depletion attenuates the virulence of Escherichia coli by 
 +reducing levels of LPS and outer membrane integrity. In contrast to previous ​
 +claims that PbgA functions as a cardiolipin transporter6–9,​ our structural ​
 +analyses and physiological studies identify a lipid A-binding motif along the 
 +periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides ​
 +selectively bind to LPS in vitro and inhibit the growth of diverse ​
 +Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, ​
 +genetic and pharmacological experiments uncover a model in which direct ​
 +periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by 
 +regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12. ​
 +In summary, we find that PbgA has an unexpected but essential role in the 
 +regulation of LPS biogenesis, presents a new structural basis for the selective ​
 +recognition of lipids, and provides opportunities for future antibiotic ​
 +discovery.","​container-title":"​Nature","​DOI":"​10.1038/​s41586-020-2597-x","​ISSN":"​1476-4687","​issue":"​7821","​language":"​en","​license":"​2020 ​
 +The Author(s), under exclusive licence to Springer Nature ​
 +Limited","​note":"​number:​ 7821\npublisher:​ Nature Publishing ​
 +Group","​page":"​479-483","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of the essential inner membrane lipopolysaccharide–PbgA ​
 +complex","​URL":"​http://​www.nature.com/​articles/​s41586-020-2597-x","​volume":"​584","​author":​[{"​family":"​Clairfeuille","​given":"​Thomas"​},​{"​family":"​Buchholz","​given":"​Kerry ​
 +R."​},​{"​family":"​Li","​given":"​Qingling"​},​{"​family":"​Verschueren","​given":"​Erik"​},​{"​family":"​Liu","​given":"​Peter"​},​{"​family":"​Sangaraju","​given":"​Dewakar"​},​{"​family":"​Park","​given":"​Summer"​},​{"​family":"​Noland","​given":"​Cameron ​
 +L."​},​{"​family":"​Storek","​given":"​Kelly ​
 +M."​},​{"​family":"​Nickerson","​given":"​Nicholas ​
 +N."​},​{"​family":"​Martin","​given":"​Lynn"​},​{"​family":"​Dela ​
 +Vega","​given":"​Trisha"​},​{"​family":"​Miu","​given":"​Anh"​},​{"​family":"​Reeder","​given":"​Janina"​},​{"​family":"​Ruiz-Gonzalez","​given":"​Maria"​},​{"​family":"​Swem","​given":"​Danielle"​},​{"​family":"​Han","​given":"​Guanghui"​},​{"​family":"​DePonte","​given":"​Daniel ​
 +P."​},​{"​family":"​Hunter","​given":"​Mark ​
 +S."​},​{"​family":"​Gati","​given":"​Cornelius"​},​{"​family":"​Shahidi-Latham","​given":"​Sheerin"​},​{"​family":"​Xu","​given":"​Min"​},​{"​family":"​Skelton","​given":"​Nicholas"​},​{"​family":"​Sellers","​given":"​Benjamin ​
 +D."​},​{"​family":"​Skippington","​given":"​Elizabeth"​},​{"​family":"​Sandoval","​given":"​Wendy"​},​{"​family":"​Hanan","​given":"​Emily ​
 +J."​},​{"​family":"​Payandeh","​given":"​Jian"​},​{"​family":"​Rutherford","​given":"​Steven ​
 +T."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​14</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Clairfeuille</​span> ​
 +et al., 2020). Unfortunately,​ there is an emergence of bacteria that are also 
 +resistant to polymyxins</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​d0lBYWG3","​properties":​{"​formattedCitation":"​\\super ​
 +14\\nosupersub{}","​plainCitation":"​14","​noteIndex":​0},"​citationItems":​[{"​id":​612,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​S5FNUZAL"​],"​itemData":​{"​id":​612,"​type":"​article-journal","​abstract":"​Lipopolysaccharide ​
 +(LPS) resides in the outer membrane of Gram-negative bacteria where it is 
 +responsible for barrier function1,​2. LPS can cause death as a result of septic ​
 +shock, and its lipid A core is the target of polymyxin antibiotics3,​4. Despite ​
 +the clinical importance of polymyxins and the emergence of multidrug resistant ​
 +strains5, our understanding of the bacterial factors that regulate LPS 
 +biogenesis is incomplete. Here we characterize the inner membrane protein PbgA 
 +and report that its depletion attenuates the virulence of Escherichia coli by 
 +reducing levels of LPS and outer membrane integrity. In contrast to previous ​
 +claims that PbgA functions as a cardiolipin transporter6–9,​ our structural ​
 +analyses and physiological studies identify a lipid A-binding motif along the 
 +periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides ​
 +selectively bind to LPS in vitro and inhibit the growth of diverse ​
 +Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, ​
 +genetic and pharmacological experiments uncover a model in which direct periplasmic ​
 +sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating ​
 +the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12. In summary, ​
 +we find that PbgA has an unexpected but essential role in the regulation of LPS 
 +biogenesis, presents a new structural basis for the selective recognition of 
 +lipids, and provides opportunities for future antibiotic ​
 +discovery.","​container-title":"​Nature","​DOI":"​10.1038/​s41586-020-2597-x","​ISSN":"​1476-4687","​issue":"​7821","​language":"​en","​license":"​2020 ​
 +The Author(s), under exclusive licence to Springer Nature ​
 +Limited","​note":"​number:​ 7821\npublisher:​ Nature Publishing ​
 +Group","​page":"​479-483","​source":"​www-nature-com.libaccess.lib.mcmaster.ca","​title":"​Structure ​
 +of the essential inner membrane lipopolysaccharide–PbgA ​
 +complex","​URL":"​http://​www.nature.com/​articles/​s41586-020-2597-x","​volume":"​584","​author":​[{"​family":"​Clairfeuille","​given":"​Thomas"​},​{"​family":"​Buchholz","​given":"​Kerry ​
 +R."​},​{"​family":"​Li","​given":"​Qingling"​},​{"​family":"​Verschueren","​given":"​Erik"​},​{"​family":"​Liu","​given":"​Peter"​},​{"​family":"​Sangaraju","​given":"​Dewakar"​},​{"​family":"​Park","​given":"​Summer"​},​{"​family":"​Noland","​given":"​Cameron ​
 +L."​},​{"​family":"​Storek","​given":"​Kelly ​
 +M."​},​{"​family":"​Nickerson","​given":"​Nicholas ​
 +N."​},​{"​family":"​Martin","​given":"​Lynn"​},​{"​family":"​Dela ​
 +Vega","​given":"​Trisha"​},​{"​family":"​Miu","​given":"​Anh"​},​{"​family":"​Reeder","​given":"​Janina"​},​{"​family":"​Ruiz-Gonzalez","​given":"​Maria"​},​{"​family":"​Swem","​given":"​Danielle"​},​{"​family":"​Han","​given":"​Guanghui"​},​{"​family":"​DePonte","​given":"​Daniel ​
 +P."​},​{"​family":"​Hunter","​given":"​Mark ​
 +S."​},​{"​family":"​Gati","​given":"​Cornelius"​},​{"​family":"​Shahidi-Latham","​given":"​Sheerin"​},​{"​family":"​Xu","​given":"​Min"​},​{"​family":"​Skelton","​given":"​Nicholas"​},​{"​family":"​Sellers","​given":"​Benjamin ​
 +D."​},​{"​family":"​Skippington","​given":"​Elizabeth"​},​{"​family":"​Sandoval","​given":"​Wendy"​},​{"​family":"​Hanan","​given":"​Emily ​
 +J."​},​{"​family":"​Payandeh","​given":"​Jian"​},​{"​family":"​Rutherford","​given":"​Steven ​
 +T."​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2020",​8]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​14</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (<span class=SpellE>​Clairfeuille</​span> ​
 +et al., 2020). One bacterial resistance mechanism that has been discovered is 
 +due to the expression of <span class=SpellE>​EptA</​span>,​ a protein part of the 
 +same family as PbgA</​span><​!--[if supportFields]><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-begin'></​span> ​
 +ADDIN ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​ZB2uPOlP","​properties":​{"​formattedCitation":"​\\super ​
 +15\\nosupersub{}","​plainCitation":"​15","​noteIndex":​0},"​citationItems":​[{"​id":​610,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​4G5T5MW8"​],"​itemData":​{"​id":​610,"​type":"​article-journal","​abstract":"​Polymyxins, ​
 +a family of cationic antimicrobial cyclic peptides, act as a last line of 
 +defense against severe infections by Gram-negative pathogens with carbapenem ​
 +resistance. In addition to the intrinsic resistance to polymyxin E (colistin) ​
 +conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance ​
 +gene mcr-1 has been disseminated globally since the first discovery in Southern ​
 +China, in late 2015. However, the molecular mechanisms for both intrinsic and 
 +transferable resistance to colistin remain largely unknown. Here, we aim to 
 +address this gap in the knowledge of these proteins. Structural and functional ​
 +analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity ​
 +that is required for the entry of the lipid substrate, phosphatidylethanolamine ​
 +(PE). The in vitro and in vivo data together have allowed us to visualize the 
 +similarities in catalytic activity shared by EptA and MCR-1 and -2. The 
 +expression of either EptA or MCR-1 or -2 is shown to remodel the surface of 
 +enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella ​
 +pneumoniae, etc.), rendering them resistant to colistin. The parallels in the 
 +PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a 
 +comprehensive understanding of both intrinsic and transferable colistin ​
 +resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two 
 +domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase) ​
 +are not functionally exchangeable. Taken together, the results represent a 
 +common mechanism for intrinsic and transferable PEA resistance to polymyxin, a 
 +last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA 
 +and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to 
 +colistin, a final resort against carbapenem-resistant pathogens. Structural and 
 +functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid 
 +substrate-recognizing cavities, which explains intrinsic and transferable ​
 +colistin resistance in gut bacteria. A similar mechanism is proposed for the 
 +catalytic activities of EptA and MCR-1 and -2. Together, they constitute a 
 +common mechanism for intrinsic and transferable polymyxin ​
 +resistance.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.02317-17","​issue":"​2","​note":"​publisher: ​
 +American Society for 
 +Microbiology","​page":"​e02317-17","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​An Evolutionarily Conserved Mechanism ​
 +for Intrinsic and Transferable Polymyxin Resistance","​URL":"​https://​journals.asm.org/​doi/​full/​10.1128/​mBio.02317-17","​volume":"​9","​author":​[{"​family":"​Xu","​given":"​Yongchang"​},​{"​family":"​Wei","​given":"​Wenhui"​},​{"​family":"​Lei","​given":"​Sheng"​},​{"​family":"​Lin","​given":"​Jingxia"​},​{"​family":"​Srinivas","​given":"​Swaminath"​},​{"​family":"​Feng","​given":"​Youjun"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2018",​4,​10]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​15</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Xu et al., 2018). This protein has 
 +been shown to remodel the surface of the bacteria, making it resistant to 
 +colistin</​span><​!--[if supportFields]><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​W7GaEfgH","​properties":​{"​formattedCitation":"​\\super ​
 +15\\nosupersub{}","​plainCitation":"​15","​noteIndex":​0},"​citationItems":​[{"​id":​610,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​4G5T5MW8"​],"​itemData":​{"​id":​610,"​type":"​article-journal","​abstract":"​Polymyxins, ​
 +a family of cationic antimicrobial cyclic peptides, act as a last line of 
 +defense against severe infections by Gram-negative pathogens with carbapenem ​
 +resistance. In addition to the intrinsic resistance to polymyxin E (colistin) ​
 +conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance ​
 +gene mcr-1 has been disseminated globally since the first discovery in Southern ​
 +China, in late 2015. However, the molecular mechanisms for both intrinsic and 
 +transferable resistance to colistin remain largely unknown. Here, we aim to 
 +address this gap in the knowledge of these proteins. Structural and functional ​
 +analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity ​
 +that is required for the entry of the lipid substrate, phosphatidylethanolamine ​
 +(PE). The in vitro and in vivo data together have allowed us to visualize the 
 +similarities in catalytic activity shared by EptA and MCR-1 and -2. The 
 +expression of either EptA or MCR-1 or -2 is shown to remodel the surface of 
 +enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella ​
 +pneumoniae, etc.), rendering them resistant to colistin. The parallels in the 
 +PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a 
 +comprehensive understanding of both intrinsic and transferable colistin ​
 +resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two 
 +domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase) ​
 +are not functionally exchangeable. Taken together, the results represent a 
 +common mechanism for intrinsic and transferable PEA resistance to polymyxin, a 
 +last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA 
 +and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to 
 +colistin, a final resort against carbapenem-resistant pathogens. Structural and 
 +functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid 
 +substrate-recognizing cavities, which explains intrinsic and transferable colistin ​
 +resistance in gut bacteria. A similar mechanism is proposed for the catalytic ​
 +activities of EptA and MCR-1 and -2. Together, they constitute a common ​
 +mechanism for intrinsic and transferable polymyxin ​
 +resistance.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.02317-17","​issue":"​2","​note":"​publisher: ​
 +American Society for 
 +Microbiology","​page":"​e02317-17","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​An Evolutionarily Conserved Mechanism ​
 +for Intrinsic and Transferable Polymyxin ​
 +Resistance","​URL":"​https://​journals.asm.org/​doi/​full/​10.1128/​mBio.02317-17","​volume":"​9","​author":​[{"​family":"​Xu","​given":"​Yongchang"​},​{"​family":"​Wei","​given":"​Wenhui"​},​{"​family":"​Lei","​given":"​Sheng"​},​{"​family":"​Lin","​given":"​Jingxia"​},​{"​family":"​Srinivas","​given":"​Swaminath"​},​{"​family":"​Feng","​given":"​Youjun"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2018",​4,​10]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​15</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Xu et al., 2018). <​span ​
 +class=SpellE>​EptA</​span>​ does this by modifying the phosphate groups on both of 
 +the phosphorylated sugars on lipid A; thereby, reducing its overall negative ​
 +charge</​span><​!--[if supportFields]><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​wH3osBJS","​properties":​{"​formattedCitation":"​\\super ​
 +15\\nosupersub{}","​plainCitation":"​15","​noteIndex":​0},"​citationItems":​[{"​id":​610,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​4G5T5MW8"​],"​itemData":​{"​id":​610,"​type":"​article-journal","​abstract":"​Polymyxins, ​
 +a family of cationic antimicrobial cyclic peptides, act as a last line of 
 +defense against severe infections by Gram-negative pathogens with carbapenem ​
 +resistance. In addition to the intrinsic resistance to polymyxin E (colistin) ​
 +conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance ​
 +gene mcr-1 has been disseminated globally since the first discovery in Southern ​
 +China, in late 2015. However, the molecular mechanisms for both intrinsic and 
 +transferable resistance to colistin remain largely unknown. Here, we aim to 
 +address this gap in the knowledge of these proteins. Structural and functional ​
 +analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity that 
 +is required for the entry of the lipid substrate, phosphatidylethanolamine ​
 +(PE). The in vitro and in vivo data together have allowed us to visualize the 
 +similarities in catalytic activity shared by EptA and MCR-1 and -2. The 
 +expression of either EptA or MCR-1 or -2 is shown to remodel the surface of 
 +enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella ​
 +pneumoniae, etc.), rendering them resistant to colistin. The parallels in the 
 +PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a 
 +comprehensive understanding of both intrinsic and transferable colistin ​
 +resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two 
 +domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase) ​
 +are not functionally exchangeable. Taken together, the results represent a 
 +common mechanism for intrinsic and transferable PEA resistance to polymyxin, a 
 +last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA 
 +and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to 
 +colistin, a final resort against carbapenem-resistant pathogens. Structural and 
 +functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid 
 +substrate-recognizing cavities, which explains intrinsic and transferable ​
 +colistin resistance in gut bacteria. A similar mechanism is proposed for the 
 +catalytic activities of EptA and MCR-1 and -2. Together, they constitute a 
 +common mechanism for intrinsic and transferable polymyxin ​
 +resistance.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.02317-17","​issue":"​2","​note":"​publisher: ​
 +American Society for 
 +Microbiology","​page":"​e02317-17","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​An Evolutionarily Conserved Mechanism ​
 +for Intrinsic and Transferable Polymyxin Resistance","​URL":"​https://​journals.asm.org/​doi/​full/​10.1128/​mBio.02317-17","​volume":"​9","​author":​[{"​family":"​Xu","​given":"​Yongchang"​},​{"​family":"​Wei","​given":"​Wenhui"​},​{"​family":"​Lei","​given":"​Sheng"​},​{"​family":"​Lin","​given":"​Jingxia"​},​{"​family":"​Srinivas","​given":"​Swaminath"​},​{"​family":"​Feng","​given":"​Youjun"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2018",​4,​10]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​15</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Xu et al., 2018). This makes the 
 +bacteria resistant to polymyxins because they can no longer have the previously ​
 +mentioned electrostatic interactions and thus cannot bind to the modified lipid 
 +A core</​span><​!--[if supportFields]><​span lang=EN style='​font-size:​12.0pt; ​
 +line-height:​115%;​font-family:"​Times New Roman",​serif;​mso-fareast-font-family: ​
 +"Times New Roman"'><​span style='​mso-element:​field-begin'></​span>​ ADDIN 
 +ZOTERO_ITEM CSL_CITATION ​
 +{"​citationID":"​Ev7M9sq2","​properties":​{"​formattedCitation":"​\\super ​
 +15\\nosupersub{}","​plainCitation":"​15","​noteIndex":​0},"​citationItems":​[{"​id":​610,"​uris":​["​http://​zotero.org/​users/​local/​DWdd4k1w/​items/​4G5T5MW8"​],"​itemData":​{"​id":​610,"​type":"​article-journal","​abstract":"​Polymyxins, ​
 +a family of cationic antimicrobial cyclic peptides, act as a last line of 
 +defense against severe infections by Gram-negative pathogens with carbapenem ​
 +resistance. In addition to the intrinsic resistance to polymyxin E (colistin) ​
 +conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance ​
 +gene mcr-1 has been disseminated globally since the first discovery in Southern ​
 +China, in late 2015. However, the molecular mechanisms for both intrinsic and 
 +transferable resistance to colistin remain largely unknown. Here, we aim to 
 +address this gap in the knowledge of these proteins. Structural and functional ​
 +analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity ​
 +that is required for the entry of the lipid substrate, phosphatidylethanolamine ​
 +(PE). The in vitro and in vivo data together have allowed us to visualize the 
 +similarities in catalytic activity shared by EptA and MCR-1 and -2. The 
 +expression of either EptA or MCR-1 or -2 is shown to remodel the surface of 
 +enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella ​
 +pneumoniae, etc.), rendering them resistant to colistin. The parallels in the 
 +PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a 
 +comprehensive understanding of both intrinsic and transferable colistin ​
 +resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two 
 +domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase) ​
 +are not functionally exchangeable. Taken together, the results represent a 
 +common mechanism for intrinsic and transferable PEA resistance to polymyxin, a 
 +last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA 
 +and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to 
 +colistin, a final resort against carbapenem-resistant pathogens. Structural and 
 +functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid 
 +substrate-recognizing cavities, which explains intrinsic and transferable ​
 +colistin resistance in gut bacteria. A similar mechanism is proposed for the 
 +catalytic activities of EptA and MCR-1 and -2. Together, they constitute a 
 +common mechanism for intrinsic and transferable polymyxin ​
 +resistance.","​container-title":"​mBio","​DOI":"​10.1128/​mBio.02317-17","​issue":"​2","​note":"​publisher: ​
 +American Society for 
 +Microbiology","​page":"​e02317-17","​source":"​journals.asm.org ​
 +(Atypon)","​title":"​An Evolutionarily Conserved Mechanism ​
 +for Intrinsic and Transferable Polymyxin Resistance","​URL":"​https://​journals.asm.org/​doi/​full/​10.1128/​mBio.02317-17","​volume":"​9","​author":​[{"​family":"​Xu","​given":"​Yongchang"​},​{"​family":"​Wei","​given":"​Wenhui"​},​{"​family":"​Lei","​given":"​Sheng"​},​{"​family":"​Lin","​given":"​Jingxia"​},​{"​family":"​Srinivas","​given":"​Swaminath"​},​{"​family":"​Feng","​given":"​Youjun"​}],"​accessed":​{"​date-parts":​[["​2023",​2,​1]]},"​issued":​{"​date-parts":​[["​2018",​4,​10]]}}}],"​schema":"​https://​github.com/​citation-style-language/​schema/​raw/​master/​csl-citation.json"​} ​
 +<span style='​mso-element:​field-separator'></​span></​span><​![endif]--><​sup><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif'>​15</​span></​sup><​!--[if supportFields]><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​span style='​mso-element:​field-end'></​span></​span><​![endif]--><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​ (Xu et al., 2018). With polymyxin ​
 +resistance becoming a bigger problem, more research on <span class=SpellE>​PbgA</​span> ​
 +will be beneficial for future antibiotic discovery.<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"; ​
 +mso-no-proof:​yes'><​!--[if gte vml 1]><​v:​shape id="​image2.png"​ o:​spid="​_x0000_i1025" ​
 +type="#​_x0000_t75"​ style='​width:​468pt;​height:​134pt;​visibility:​visible; ​
 +mso-wrap-style:​square'><​v:​imagedata src="​Wiki%20Draft%20(1)_files/​image019.png"​ o:​title=""/></​v:​shape><​![endif]--><​![if !vml]><​img border=0 width=624 height=179 ​
 +src="​Wiki%20Draft%20(1)_files/​image020.gif"​ v:​shapes="​image2.png"><​![endif]></​span><​span ​
 +lang=EN style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​Figure X: </​span>'''<​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​The enzyme <span class=SpellE>​EptA</​span> ​
 +modifies LPS and reduces the negative charge of lipid A; therefore, prevents ​
 +colistin from binding and makes bacteria resistant to the antibiotic.<​o:​p></​o:​p></​span><​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span>'''<​p class=MsoNormal><​b style='​mso-bidi-font-weight:​normal'><​span lang=EN ​
 +style='​font-size:​12.0pt;​line-height:​115%;​font-family:"​Times New Roman",​serif; ​
 +mso-fareast-font-family:"​Times New Roman"'>​Conclusion:<​o:​p></​o:​p></​span>'''<​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'>​Antibiotic ​
 +resistance is a growing concern today and for our future. Gram-negative ​
 +bacteria have been particularly associated with antibiotic resistance due to the 
 +presence of LPS in their cell wall, <span class=GramE>​acting<​span ​
 +style='​mso-spacerun:​yes'>​  </​span>​as</​span>​ a protective barrier against drugs. ​
 +The ability of these bacteria to rapidly evolve and develop resistance to 
 +antibiotics has made it an ongoing challenge for scientists to find new ways to 
 +combat these infections. Understanding the pathways in which LPS is synthesized ​
 +and regulated demonstrates importance pertaining to antibiotic drug targeting. <​span ​
 +class=SpellE>​Clairfeullie</​span>​ et al. contribute to this research through ​
 +characterizing <span class=SpellE>​PbgA</​span>​ and demonstrating how 
 +manipulation of this protein could possibly be utilized in the lowering of LPS 
 +levels and subsequently virulence by <i style='​mso-bidi-font-style:​normal'>​E. ​
 +coli''​.<​o:​p></​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span><​p class=MsoNormal><​span lang=EN style='​font-size:​12.0pt;​line-height:​115%; ​
 +font-family:"​Times New Roman",​serif;​mso-fareast-font-family:"​Times New Roman"'><​o:​p>​ </​o:​p></​span></​div></​body></​html> ​
  
Print/export
QR Code
QR Code playground:playground (generated for current page)