Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
playground:playground [2015/03/19 15:35] 127.0.0.1 external edit |
playground:playground [2023/02/01 22:54] (current) desaia14 |
||
---|---|---|---|
Line 1: | Line 1: | ||
====== PlayGround ====== | ====== PlayGround ====== | ||
+ | <html xmlns:v="urn:schemas-microsoft-com:vml" | ||
+ | xmlns:o="urn:schemas-microsoft-com:office:office" | ||
+ | xmlns:w="urn:schemas-microsoft-com:office:word" | ||
+ | xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882" | ||
+ | xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" | ||
+ | xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=windows-1252"><meta name=ProgId content=Word.Document><meta name=Generator content="Microsoft Word 15"><meta name=Originator content="Microsoft Word 15"><link rel=File-List href="Wiki%20Draft%20(1)_files/filelist.xml"><link rel=Edit-Time-Data href="Wiki%20Draft%20(1)_files/editdata.mso"><!--[if !mso]><style> | ||
+ | v\:* {behavior:url(#default#VML);} | ||
+ | o\:* {behavior:url(#default#VML);} | ||
+ | w\:* {behavior:url(#default#VML);} | ||
+ | .shape {behavior:url(#default#VML);} | ||
+ | </style><![endif]--><!--[if gte mso 9]><xml><o:CustomDocumentProperties><o:ZOTERO_PREF_1 dt:dt="string"><data data-version="3" zotero-version="6.0.20"><session id="bFb6WQcK"/><style id="http://www.zotero.org/styles/vancouver-superscript" locale="en-GB" hasBibliography="1" bibliographyStyleHasBeenSet="0"/><prefs><pref name="fieldType" value="Field"/><pref na</o:ZOTERO_PREF_1><o:ZOTERO_PREF_2 dt:dt="string">me="automaticJournalAbbreviations" value="true"/></prefs></data></o:ZOTERO_PREF_2><o:ContentTypeId dt:dt="string">0x01010065B13F740B157D4F863C7A3FE966D8E7</o:ContentTypeId></o:CustomDocumentProperties></xml><![endif]--><link rel=dataStoreItem href="Wiki%20Draft%20(1)_files/item0001.xml" | ||
+ | target="Wiki%20Draft%20(1)_files/props002.xml"><link rel=dataStoreItem href="Wiki%20Draft%20(1)_files/item0003.xml" | ||
+ | target="Wiki%20Draft%20(1)_files/props004.xml"><link rel=dataStoreItem href="Wiki%20Draft%20(1)_files/item0005.xml" | ||
+ | target="Wiki%20Draft%20(1)_files/props006.xml"><link rel=themeData href="Wiki%20Draft%20(1)_files/themedata.thmx"><link rel=colorSchemeMapping | ||
+ | href="Wiki%20Draft%20(1)_files/colorschememapping.xml"><!--[if gte mso 9]><xml><w:WordDocument><w:SpellingState>Clean</w:SpellingState><w:GrammarState>Clean</w:GrammarState><w:TrackMoves>false</w:TrackMoves><w:TrackFormatting/><w:PunctuationKerning/><w:ValidateAgainstSchemas/><w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid><w:IgnoreMixedContent>false</w:IgnoreMixedContent><w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText><w:DoNotPromoteQF/><w:LidThemeOther>EN-CA</w:LidThemeOther><w:LidThemeAsian>X-NONE</w:LidThemeAsian><w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript><w:Compatibility><w:BreakWrappedTables/><w:SnapToGridInCell/><w:WrapTextWithPunct/><w:UseAsianBreakRules/><w:DontGrowAutofit/><w:SplitPgBreakAndParaMark/><w:EnableOpenTypeKerning/><w:DontFlipMirrorIndents/><w:OverrideTableStyleHps/></w:Compatibility><w:DoNotOptimizeForBrowser/><m:mathPr><m:mathFont m:val="Cambria Math"/><m:brkBin m:val="before"/><m:brkBinSub m:val="--"/><m:smallFrac m:val="off"/><m:dispDef/><m:lMargin m:val="0"/><m:rMargin m:val="0"/><m:defJc m:val="centerGroup"/><m:wrapIndent m:val="1440"/><m:intLim m:val="subSup"/><m:naryLim m:val="undOvr"/></m:mathPr></w:WordDocument></xml><![endif]--><!--[if gte mso 9]><xml><w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="false" | ||
+ | DefSemiHidden="false" DefQFormat="false" DefPriority="99" | ||
+ | LatentStyleCount="376"><w:LsdException Locked="false" Priority="0" QFormat="true" Name="Normal"/><w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 1"/><w:LsdException Locked="false" Priority="9" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" QFormat="true" Name="heading 2"/><w:LsdException Locked="false" Priority="9" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" QFormat="true" Name="heading 3"/><w:LsdException Locked="false" Priority="9" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" QFormat="true" Name="heading 4"/><w:LsdException Locked="false" Priority="9" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" QFormat="true" Name="heading 5"/><w:LsdException Locked="false" Priority="9" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" QFormat="true" Name="heading 6"/><w:LsdException Locked="false" Priority="9" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" QFormat="true" Name="heading 7"/><w:LsdException Locked="false" Priority="9" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" QFormat="true" Name="heading 8"/><w:LsdException Locked="false" Priority="9" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" QFormat="true" Name="heading 9"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="index 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="index 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="index 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="index 4"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="index 5"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="index 6"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="index 7"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="index 8"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="index 9"/><w:LsdException Locked="false" Priority="39" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="toc 1"/><w:LsdException Locked="false" Priority="39" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="toc 2"/><w:LsdException Locked="false" Priority="39" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="toc 3"/><w:LsdException Locked="false" Priority="39" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="toc 4"/><w:LsdException Locked="false" Priority="39" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="toc 5"/><w:LsdException Locked="false" Priority="39" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="toc 6"/><w:LsdException Locked="false" Priority="39" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="toc 7"/><w:LsdException Locked="false" Priority="39" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="toc 8"/><w:LsdException Locked="false" Priority="39" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="toc 9"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Normal Indent"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="footnote text"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="annotation text"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="header"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="footer"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="index heading"/><w:LsdException Locked="false" Priority="35" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" QFormat="true" Name="caption"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="table of figures"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="envelope address"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="envelope return"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="footnote reference"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="annotation reference"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="line number"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="page number"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="endnote reference"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="endnote text"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="table of authorities"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="macro"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="toa heading"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Bullet"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Number"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List 4"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List 5"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Bullet 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Bullet 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Bullet 4"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Bullet 5"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Number 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Number 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Number 4"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Number 5"/><w:LsdException Locked="false" Priority="10" QFormat="true" Name="Title"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Closing"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Signature"/><w:LsdException Locked="false" Priority="1" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="Default Paragraph Font"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Body Text"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Body Text Indent"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Continue"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Continue 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Continue 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Continue 4"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="List Continue 5"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Message Header"/><w:LsdException Locked="false" Priority="11" QFormat="true" Name="Subtitle"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Salutation"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Date"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Body Text First Indent"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Body Text First Indent 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Note Heading"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Body Text 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Body Text 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Body Text Indent 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Body Text Indent 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Block Text"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Hyperlink"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="FollowedHyperlink"/><w:LsdException Locked="false" Priority="22" QFormat="true" Name="Strong"/><w:LsdException Locked="false" Priority="20" QFormat="true" Name="Emphasis"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Document Map"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Plain Text"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="E-mail Signature"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Top of Form"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Bottom of Form"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Normal (Web)"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Acronym"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Address"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Cite"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Code"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Definition"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Keyboard"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Preformatted"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Sample"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Typewriter"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="HTML Variable"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Normal Table"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="annotation subject"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="No List"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Outline List 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Outline List 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Outline List 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Simple 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Simple 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Simple 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Classic 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Classic 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Classic 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Classic 4"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Colorful 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Colorful 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Colorful 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Columns 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Columns 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Columns 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Columns 4"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Columns 5"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Grid 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Grid 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Grid 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Grid 4"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Grid 5"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Grid 6"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Grid 7"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Grid 8"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table List 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table List 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table List 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table List 4"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table List 5"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table List 6"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table List 7"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table List 8"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table 3D effects 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table 3D effects 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table 3D effects 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Contemporary"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Elegant"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Professional"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Subtle 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Subtle 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Web 1"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Web 2"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Web 3"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Balloon Text"/><w:LsdException Locked="false" Priority="39" Name="Table Grid"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Table Theme"/><w:LsdException Locked="false" SemiHidden="true" Name="Placeholder Text"/><w:LsdException Locked="false" Priority="1" QFormat="true" Name="No Spacing"/><w:LsdException Locked="false" Priority="60" Name="Light Shading"/><w:LsdException Locked="false" Priority="61" Name="Light List"/><w:LsdException Locked="false" Priority="62" Name="Light Grid"/><w:LsdException Locked="false" Priority="63" Name="Medium Shading 1"/><w:LsdException Locked="false" Priority="64" Name="Medium Shading 2"/><w:LsdException Locked="false" Priority="65" Name="Medium List 1"/><w:LsdException Locked="false" Priority="66" Name="Medium List 2"/><w:LsdException Locked="false" Priority="67" Name="Medium Grid 1"/><w:LsdException Locked="false" Priority="68" Name="Medium Grid 2"/><w:LsdException Locked="false" Priority="69" Name="Medium Grid 3"/><w:LsdException Locked="false" Priority="70" Name="Dark List"/><w:LsdException Locked="false" Priority="71" Name="Colorful Shading"/><w:LsdException Locked="false" Priority="72" Name="Colorful List"/><w:LsdException Locked="false" Priority="73" Name="Colorful Grid"/><w:LsdException Locked="false" Priority="60" Name="Light Shading Accent 1"/><w:LsdException Locked="false" Priority="61" Name="Light List Accent 1"/><w:LsdException Locked="false" Priority="62" Name="Light Grid Accent 1"/><w:LsdException Locked="false" Priority="63" Name="Medium Shading 1 Accent 1"/><w:LsdException Locked="false" Priority="64" Name="Medium Shading 2 Accent 1"/><w:LsdException Locked="false" Priority="65" Name="Medium List 1 Accent 1"/><w:LsdException Locked="false" SemiHidden="true" Name="Revision"/><w:LsdException Locked="false" Priority="34" QFormat="true" | ||
+ | Name="List Paragraph"/><w:LsdException Locked="false" Priority="29" QFormat="true" Name="Quote"/><w:LsdException Locked="false" Priority="30" QFormat="true" | ||
+ | Name="Intense Quote"/><w:LsdException Locked="false" Priority="66" Name="Medium List 2 Accent 1"/><w:LsdException Locked="false" Priority="67" Name="Medium Grid 1 Accent 1"/><w:LsdException Locked="false" Priority="68" Name="Medium Grid 2 Accent 1"/><w:LsdException Locked="false" Priority="69" Name="Medium Grid 3 Accent 1"/><w:LsdException Locked="false" Priority="70" Name="Dark List Accent 1"/><w:LsdException Locked="false" Priority="71" Name="Colorful Shading Accent 1"/><w:LsdException Locked="false" Priority="72" Name="Colorful List Accent 1"/><w:LsdException Locked="false" Priority="73" Name="Colorful Grid Accent 1"/><w:LsdException Locked="false" Priority="60" Name="Light Shading Accent 2"/><w:LsdException Locked="false" Priority="61" Name="Light List Accent 2"/><w:LsdException Locked="false" Priority="62" Name="Light Grid Accent 2"/><w:LsdException Locked="false" Priority="63" Name="Medium Shading 1 Accent 2"/><w:LsdException Locked="false" Priority="64" Name="Medium Shading 2 Accent 2"/><w:LsdException Locked="false" Priority="65" Name="Medium List 1 Accent 2"/><w:LsdException Locked="false" Priority="66" Name="Medium List 2 Accent 2"/><w:LsdException Locked="false" Priority="67" Name="Medium Grid 1 Accent 2"/><w:LsdException Locked="false" Priority="68" Name="Medium Grid 2 Accent 2"/><w:LsdException Locked="false" Priority="69" Name="Medium Grid 3 Accent 2"/><w:LsdException Locked="false" Priority="70" Name="Dark List Accent 2"/><w:LsdException Locked="false" Priority="71" Name="Colorful Shading Accent 2"/><w:LsdException Locked="false" Priority="72" Name="Colorful List Accent 2"/><w:LsdException Locked="false" Priority="73" Name="Colorful Grid Accent 2"/><w:LsdException Locked="false" Priority="60" Name="Light Shading Accent 3"/><w:LsdException Locked="false" Priority="61" Name="Light List Accent 3"/><w:LsdException Locked="false" Priority="62" Name="Light Grid Accent 3"/><w:LsdException Locked="false" Priority="63" Name="Medium Shading 1 Accent 3"/><w:LsdException Locked="false" Priority="64" Name="Medium Shading 2 Accent 3"/><w:LsdException Locked="false" Priority="65" Name="Medium List 1 Accent 3"/><w:LsdException Locked="false" Priority="66" Name="Medium List 2 Accent 3"/><w:LsdException Locked="false" Priority="67" Name="Medium Grid 1 Accent 3"/><w:LsdException Locked="false" Priority="68" Name="Medium Grid 2 Accent 3"/><w:LsdException Locked="false" Priority="69" Name="Medium Grid 3 Accent 3"/><w:LsdException Locked="false" Priority="70" Name="Dark List Accent 3"/><w:LsdException Locked="false" Priority="71" Name="Colorful Shading Accent 3"/><w:LsdException Locked="false" Priority="72" Name="Colorful List Accent 3"/><w:LsdException Locked="false" Priority="73" Name="Colorful Grid Accent 3"/><w:LsdException Locked="false" Priority="60" Name="Light Shading Accent 4"/><w:LsdException Locked="false" Priority="61" Name="Light List Accent 4"/><w:LsdException Locked="false" Priority="62" Name="Light Grid Accent 4"/><w:LsdException Locked="false" Priority="63" Name="Medium Shading 1 Accent 4"/><w:LsdException Locked="false" Priority="64" Name="Medium Shading 2 Accent 4"/><w:LsdException Locked="false" Priority="65" Name="Medium List 1 Accent 4"/><w:LsdException Locked="false" Priority="66" Name="Medium List 2 Accent 4"/><w:LsdException Locked="false" Priority="67" Name="Medium Grid 1 Accent 4"/><w:LsdException Locked="false" Priority="68" Name="Medium Grid 2 Accent 4"/><w:LsdException Locked="false" Priority="69" Name="Medium Grid 3 Accent 4"/><w:LsdException Locked="false" Priority="70" Name="Dark List Accent 4"/><w:LsdException Locked="false" Priority="71" Name="Colorful Shading Accent 4"/><w:LsdException Locked="false" Priority="72" Name="Colorful List Accent 4"/><w:LsdException Locked="false" Priority="73" Name="Colorful Grid Accent 4"/><w:LsdException Locked="false" Priority="60" Name="Light Shading Accent 5"/><w:LsdException Locked="false" Priority="61" Name="Light List Accent 5"/><w:LsdException Locked="false" Priority="62" Name="Light Grid Accent 5"/><w:LsdException Locked="false" Priority="63" Name="Medium Shading 1 Accent 5"/><w:LsdException Locked="false" Priority="64" Name="Medium Shading 2 Accent 5"/><w:LsdException Locked="false" Priority="65" Name="Medium List 1 Accent 5"/><w:LsdException Locked="false" Priority="66" Name="Medium List 2 Accent 5"/><w:LsdException Locked="false" Priority="67" Name="Medium Grid 1 Accent 5"/><w:LsdException Locked="false" Priority="68" Name="Medium Grid 2 Accent 5"/><w:LsdException Locked="false" Priority="69" Name="Medium Grid 3 Accent 5"/><w:LsdException Locked="false" Priority="70" Name="Dark List Accent 5"/><w:LsdException Locked="false" Priority="71" Name="Colorful Shading Accent 5"/><w:LsdException Locked="false" Priority="72" Name="Colorful List Accent 5"/><w:LsdException Locked="false" Priority="73" Name="Colorful Grid Accent 5"/><w:LsdException Locked="false" Priority="60" Name="Light Shading Accent 6"/><w:LsdException Locked="false" Priority="61" Name="Light List Accent 6"/><w:LsdException Locked="false" Priority="62" Name="Light Grid Accent 6"/><w:LsdException Locked="false" Priority="63" Name="Medium Shading 1 Accent 6"/><w:LsdException Locked="false" Priority="64" Name="Medium Shading 2 Accent 6"/><w:LsdException Locked="false" Priority="65" Name="Medium List 1 Accent 6"/><w:LsdException Locked="false" Priority="66" Name="Medium List 2 Accent 6"/><w:LsdException Locked="false" Priority="67" Name="Medium Grid 1 Accent 6"/><w:LsdException Locked="false" Priority="68" Name="Medium Grid 2 Accent 6"/><w:LsdException Locked="false" Priority="69" Name="Medium Grid 3 Accent 6"/><w:LsdException Locked="false" Priority="70" Name="Dark List Accent 6"/><w:LsdException Locked="false" Priority="71" Name="Colorful Shading Accent 6"/><w:LsdException Locked="false" Priority="72" Name="Colorful List Accent 6"/><w:LsdException Locked="false" Priority="73" Name="Colorful Grid Accent 6"/><w:LsdException Locked="false" Priority="19" QFormat="true" | ||
+ | Name="Subtle Emphasis"/><w:LsdException Locked="false" Priority="21" QFormat="true" | ||
+ | Name="Intense Emphasis"/><w:LsdException Locked="false" Priority="31" QFormat="true" | ||
+ | Name="Subtle Reference"/><w:LsdException Locked="false" Priority="32" QFormat="true" | ||
+ | Name="Intense Reference"/><w:LsdException Locked="false" Priority="33" QFormat="true" Name="Book Title"/><w:LsdException Locked="false" Priority="37" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" Name="Bibliography"/><w:LsdException Locked="false" Priority="39" SemiHidden="true" | ||
+ | UnhideWhenUsed="true" QFormat="true" Name="TOC Heading"/><w:LsdException Locked="false" Priority="41" Name="Plain Table 1"/><w:LsdException Locked="false" Priority="42" Name="Plain Table 2"/><w:LsdException Locked="false" Priority="43" Name="Plain Table 3"/><w:LsdException Locked="false" Priority="44" Name="Plain Table 4"/><w:LsdException Locked="false" Priority="45" Name="Plain Table 5"/><w:LsdException Locked="false" Priority="40" Name="Grid Table Light"/><w:LsdException Locked="false" Priority="46" Name="Grid Table 1 Light"/><w:LsdException Locked="false" Priority="47" Name="Grid Table 2"/><w:LsdException Locked="false" Priority="48" Name="Grid Table 3"/><w:LsdException Locked="false" Priority="49" Name="Grid Table 4"/><w:LsdException Locked="false" Priority="50" Name="Grid Table 5 Dark"/><w:LsdException Locked="false" Priority="51" Name="Grid Table 6 Colorful"/><w:LsdException Locked="false" Priority="52" Name="Grid Table 7 Colorful"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="Grid Table 1 Light Accent 1"/><w:LsdException Locked="false" Priority="47" Name="Grid Table 2 Accent 1"/><w:LsdException Locked="false" Priority="48" Name="Grid Table 3 Accent 1"/><w:LsdException Locked="false" Priority="49" Name="Grid Table 4 Accent 1"/><w:LsdException Locked="false" Priority="50" Name="Grid Table 5 Dark Accent 1"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="Grid Table 6 Colorful Accent 1"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="Grid Table 7 Colorful Accent 1"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="Grid Table 1 Light Accent 2"/><w:LsdException Locked="false" Priority="47" Name="Grid Table 2 Accent 2"/><w:LsdException Locked="false" Priority="48" Name="Grid Table 3 Accent 2"/><w:LsdException Locked="false" Priority="49" Name="Grid Table 4 Accent 2"/><w:LsdException Locked="false" Priority="50" Name="Grid Table 5 Dark Accent 2"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="Grid Table 6 Colorful Accent 2"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="Grid Table 7 Colorful Accent 2"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="Grid Table 1 Light Accent 3"/><w:LsdException Locked="false" Priority="47" Name="Grid Table 2 Accent 3"/><w:LsdException Locked="false" Priority="48" Name="Grid Table 3 Accent 3"/><w:LsdException Locked="false" Priority="49" Name="Grid Table 4 Accent 3"/><w:LsdException Locked="false" Priority="50" Name="Grid Table 5 Dark Accent 3"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="Grid Table 6 Colorful Accent 3"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="Grid Table 7 Colorful Accent 3"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="Grid Table 1 Light Accent 4"/><w:LsdException Locked="false" Priority="47" Name="Grid Table 2 Accent 4"/><w:LsdException Locked="false" Priority="48" Name="Grid Table 3 Accent 4"/><w:LsdException Locked="false" Priority="49" Name="Grid Table 4 Accent 4"/><w:LsdException Locked="false" Priority="50" Name="Grid Table 5 Dark Accent 4"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="Grid Table 6 Colorful Accent 4"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="Grid Table 7 Colorful Accent 4"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="Grid Table 1 Light Accent 5"/><w:LsdException Locked="false" Priority="47" Name="Grid Table 2 Accent 5"/><w:LsdException Locked="false" Priority="48" Name="Grid Table 3 Accent 5"/><w:LsdException Locked="false" Priority="49" Name="Grid Table 4 Accent 5"/><w:LsdException Locked="false" Priority="50" Name="Grid Table 5 Dark Accent 5"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="Grid Table 6 Colorful Accent 5"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="Grid Table 7 Colorful Accent 5"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="Grid Table 1 Light Accent 6"/><w:LsdException Locked="false" Priority="47" Name="Grid Table 2 Accent 6"/><w:LsdException Locked="false" Priority="48" Name="Grid Table 3 Accent 6"/><w:LsdException Locked="false" Priority="49" Name="Grid Table 4 Accent 6"/><w:LsdException Locked="false" Priority="50" Name="Grid Table 5 Dark Accent 6"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="Grid Table 6 Colorful Accent 6"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="Grid Table 7 Colorful Accent 6"/><w:LsdException Locked="false" Priority="46" Name="List Table 1 Light"/><w:LsdException Locked="false" Priority="47" Name="List Table 2"/><w:LsdException Locked="false" Priority="48" Name="List Table 3"/><w:LsdException Locked="false" Priority="49" Name="List Table 4"/><w:LsdException Locked="false" Priority="50" Name="List Table 5 Dark"/><w:LsdException Locked="false" Priority="51" Name="List Table 6 Colorful"/><w:LsdException Locked="false" Priority="52" Name="List Table 7 Colorful"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="List Table 1 Light Accent 1"/><w:LsdException Locked="false" Priority="47" Name="List Table 2 Accent 1"/><w:LsdException Locked="false" Priority="48" Name="List Table 3 Accent 1"/><w:LsdException Locked="false" Priority="49" Name="List Table 4 Accent 1"/><w:LsdException Locked="false" Priority="50" Name="List Table 5 Dark Accent 1"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="List Table 6 Colorful Accent 1"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="List Table 7 Colorful Accent 1"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="List Table 1 Light Accent 2"/><w:LsdException Locked="false" Priority="47" Name="List Table 2 Accent 2"/><w:LsdException Locked="false" Priority="48" Name="List Table 3 Accent 2"/><w:LsdException Locked="false" Priority="49" Name="List Table 4 Accent 2"/><w:LsdException Locked="false" Priority="50" Name="List Table 5 Dark Accent 2"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="List Table 6 Colorful Accent 2"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="List Table 7 Colorful Accent 2"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="List Table 1 Light Accent 3"/><w:LsdException Locked="false" Priority="47" Name="List Table 2 Accent 3"/><w:LsdException Locked="false" Priority="48" Name="List Table 3 Accent 3"/><w:LsdException Locked="false" Priority="49" Name="List Table 4 Accent 3"/><w:LsdException Locked="false" Priority="50" Name="List Table 5 Dark Accent 3"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="List Table 6 Colorful Accent 3"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="List Table 7 Colorful Accent 3"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="List Table 1 Light Accent 4"/><w:LsdException Locked="false" Priority="47" Name="List Table 2 Accent 4"/><w:LsdException Locked="false" Priority="48" Name="List Table 3 Accent 4"/><w:LsdException Locked="false" Priority="49" Name="List Table 4 Accent 4"/><w:LsdException Locked="false" Priority="50" Name="List Table 5 Dark Accent 4"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="List Table 6 Colorful Accent 4"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="List Table 7 Colorful Accent 4"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="List Table 1 Light Accent 5"/><w:LsdException Locked="false" Priority="47" Name="List Table 2 Accent 5"/><w:LsdException Locked="false" Priority="48" Name="List Table 3 Accent 5"/><w:LsdException Locked="false" Priority="49" Name="List Table 4 Accent 5"/><w:LsdException Locked="false" Priority="50" Name="List Table 5 Dark Accent 5"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="List Table 6 Colorful Accent 5"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="List Table 7 Colorful Accent 5"/><w:LsdException Locked="false" Priority="46" | ||
+ | Name="List Table 1 Light Accent 6"/><w:LsdException Locked="false" Priority="47" Name="List Table 2 Accent 6"/><w:LsdException Locked="false" Priority="48" Name="List Table 3 Accent 6"/><w:LsdException Locked="false" Priority="49" Name="List Table 4 Accent 6"/><w:LsdException Locked="false" Priority="50" Name="List Table 5 Dark Accent 6"/><w:LsdException Locked="false" Priority="51" | ||
+ | Name="List Table 6 Colorful Accent 6"/><w:LsdException Locked="false" Priority="52" | ||
+ | Name="List Table 7 Colorful Accent 6"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Mention"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Smart Hyperlink"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Hashtag"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Unresolved Mention"/><w:LsdException Locked="false" SemiHidden="true" UnhideWhenUsed="true" | ||
+ | Name="Smart Link"/></w:LatentStyles></xml><![endif]--><style><!-- | ||
+ | /* Font Definitions */ | ||
+ | @font-face | ||
+ | {font-family:"Cambria Math"; | ||
+ | panose-1:2 4 5 3 5 4 6 3 2 4; | ||
+ | mso-font-charset:0; | ||
+ | mso-generic-font-family:roman; | ||
+ | mso-font-pitch:variable; | ||
+ | mso-font-signature:-536869121 1107305727 33554432 0 415 0;} | ||
+ | /* Style Definitions */ | ||
+ | p.MsoNormal, li.MsoNormal, div.MsoNormal | ||
+ | {mso-style-unhide:no; | ||
+ | mso-style-qformat:yes; | ||
+ | mso-style-parent:""; | ||
+ | margin:0cm; | ||
+ | line-height:115%; | ||
+ | mso-pagination:widow-orphan; | ||
+ | font-size:11.0pt; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | mso-fareast-font-family:Arial; | ||
+ | mso-ansi-language:EN;} | ||
+ | h1 | ||
+ | {mso-style-priority:9; | ||
+ | mso-style-unhide:no; | ||
+ | mso-style-qformat:yes; | ||
+ | mso-style-next:Normal; | ||
+ | margin-top:20.0pt; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:6.0pt; | ||
+ | margin-left:0cm; | ||
+ | line-height:115%; | ||
+ | mso-pagination:widow-orphan lines-together; | ||
+ | page-break-after:avoid; | ||
+ | mso-outline-level:1; | ||
+ | font-size:20.0pt; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | mso-font-kerning:0pt; | ||
+ | mso-ansi-language:EN; | ||
+ | font-weight:normal;} | ||
+ | h2 | ||
+ | {mso-style-noshow:yes; | ||
+ | mso-style-priority:9; | ||
+ | mso-style-qformat:yes; | ||
+ | mso-style-next:Normal; | ||
+ | margin-top:18.0pt; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:6.0pt; | ||
+ | margin-left:0cm; | ||
+ | line-height:115%; | ||
+ | mso-pagination:widow-orphan lines-together; | ||
+ | page-break-after:avoid; | ||
+ | mso-outline-level:2; | ||
+ | font-size:16.0pt; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | mso-ansi-language:EN; | ||
+ | font-weight:normal;} | ||
+ | h3 | ||
+ | {mso-style-noshow:yes; | ||
+ | mso-style-priority:9; | ||
+ | mso-style-qformat:yes; | ||
+ | mso-style-next:Normal; | ||
+ | margin-top:16.0pt; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:4.0pt; | ||
+ | margin-left:0cm; | ||
+ | line-height:115%; | ||
+ | mso-pagination:widow-orphan lines-together; | ||
+ | page-break-after:avoid; | ||
+ | mso-outline-level:3; | ||
+ | font-size:14.0pt; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | color:#434343; | ||
+ | mso-ansi-language:EN; | ||
+ | font-weight:normal;} | ||
+ | h4 | ||
+ | {mso-style-noshow:yes; | ||
+ | mso-style-priority:9; | ||
+ | mso-style-qformat:yes; | ||
+ | mso-style-next:Normal; | ||
+ | margin-top:14.0pt; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:4.0pt; | ||
+ | margin-left:0cm; | ||
+ | line-height:115%; | ||
+ | mso-pagination:widow-orphan lines-together; | ||
+ | page-break-after:avoid; | ||
+ | mso-outline-level:4; | ||
+ | font-size:12.0pt; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | color:#666666; | ||
+ | mso-ansi-language:EN; | ||
+ | font-weight:normal;} | ||
+ | h5 | ||
+ | {mso-style-noshow:yes; | ||
+ | mso-style-priority:9; | ||
+ | mso-style-qformat:yes; | ||
+ | mso-style-next:Normal; | ||
+ | margin-top:12.0pt; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:4.0pt; | ||
+ | margin-left:0cm; | ||
+ | line-height:115%; | ||
+ | mso-pagination:widow-orphan lines-together; | ||
+ | page-break-after:avoid; | ||
+ | mso-outline-level:5; | ||
+ | font-size:11.0pt; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | color:#666666; | ||
+ | mso-ansi-language:EN; | ||
+ | font-weight:normal;} | ||
+ | h6 | ||
+ | {mso-style-noshow:yes; | ||
+ | mso-style-priority:9; | ||
+ | mso-style-qformat:yes; | ||
+ | mso-style-next:Normal; | ||
+ | margin-top:12.0pt; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:4.0pt; | ||
+ | margin-left:0cm; | ||
+ | line-height:115%; | ||
+ | mso-pagination:widow-orphan lines-together; | ||
+ | page-break-after:avoid; | ||
+ | mso-outline-level:6; | ||
+ | font-size:11.0pt; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | color:#666666; | ||
+ | mso-ansi-language:EN; | ||
+ | font-weight:normal; | ||
+ | font-style:italic; | ||
+ | mso-bidi-font-style:normal;} | ||
+ | p.MsoTitle, li.MsoTitle, div.MsoTitle | ||
+ | {mso-style-priority:10; | ||
+ | mso-style-unhide:no; | ||
+ | mso-style-qformat:yes; | ||
+ | mso-style-next:Normal; | ||
+ | margin-top:0cm; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:3.0pt; | ||
+ | margin-left:0cm; | ||
+ | line-height:115%; | ||
+ | mso-pagination:widow-orphan lines-together; | ||
+ | page-break-after:avoid; | ||
+ | font-size:26.0pt; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | mso-fareast-font-family:Arial; | ||
+ | mso-ansi-language:EN;} | ||
+ | p.MsoSubtitle, li.MsoSubtitle, div.MsoSubtitle | ||
+ | {mso-style-priority:11; | ||
+ | mso-style-unhide:no; | ||
+ | mso-style-qformat:yes; | ||
+ | mso-style-next:Normal; | ||
+ | margin-top:0cm; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:16.0pt; | ||
+ | margin-left:0cm; | ||
+ | line-height:115%; | ||
+ | mso-pagination:widow-orphan lines-together; | ||
+ | page-break-after:avoid; | ||
+ | font-size:15.0pt; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | mso-fareast-font-family:Arial; | ||
+ | color:#666666; | ||
+ | mso-ansi-language:EN;} | ||
+ | span.SpellE | ||
+ | {mso-style-name:""; | ||
+ | mso-spl-e:yes;} | ||
+ | span.GramE | ||
+ | {mso-style-name:""; | ||
+ | mso-gram-e:yes;} | ||
+ | .MsoChpDefault | ||
+ | {mso-style-type:export-only; | ||
+ | mso-default-props:yes; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | mso-ascii-font-family:Arial; | ||
+ | mso-fareast-font-family:Arial; | ||
+ | mso-hansi-font-family:Arial; | ||
+ | mso-bidi-font-family:Arial; | ||
+ | mso-ansi-language:EN;} | ||
+ | .MsoPapDefault | ||
+ | {mso-style-type:export-only; | ||
+ | line-height:115%;} | ||
+ | @page WordSection1 | ||
+ | {size:612.0pt 792.0pt; | ||
+ | margin:72.0pt 72.0pt 72.0pt 72.0pt; | ||
+ | mso-header-margin:36.0pt; | ||
+ | mso-footer-margin:36.0pt; | ||
+ | mso-page-numbers:1; | ||
+ | mso-paper-source:0;} | ||
+ | div.WordSection1 | ||
+ | {page:WordSection1;} | ||
+ | /* List Definitions */ | ||
+ | ol | ||
+ | {margin-bottom:0cm;} | ||
+ | ul | ||
+ | {margin-bottom:0cm;} | ||
+ | --></style><!--[if gte mso 10]><style> | ||
+ | /* Style Definitions */ | ||
+ | table.MsoNormalTable | ||
+ | {mso-style-name:"Table Normal"; | ||
+ | mso-tstyle-rowband-size:0; | ||
+ | mso-tstyle-colband-size:0; | ||
+ | mso-style-noshow:yes; | ||
+ | mso-style-priority:99; | ||
+ | mso-style-parent:""; | ||
+ | mso-padding-alt:0cm 5.4pt 0cm 5.4pt; | ||
+ | mso-para-margin:0cm; | ||
+ | line-height:115%; | ||
+ | mso-pagination:widow-orphan; | ||
+ | font-size:11.0pt; | ||
+ | font-family:"Arial",sans-serif; | ||
+ | mso-ansi-language:EN;} | ||
+ | </style><![endif]--><!--[if gte mso 9]><xml><o:shapedefaults v:ext="edit" spidmax="1026"/></xml><![endif]--><!--[if gte mso 9]><xml><o:shapelayout v:ext="edit"><o:idmap v:ext="edit" data="1"/></o:shapelayout></xml><![endif]--></head><body lang=EN-CA style='tab-interval:36.0pt;word-wrap:break-word'><div class=WordSection1><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>Introduction: <o:p></o:p></span>'''<p class=MsoNormal style='margin-bottom:12.0pt'><span lang=EN style='font-size: | ||
+ | 12.0pt;line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>Gram-Negative Bacteria:<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>For | ||
+ | survival, bacteria have a cell envelope surrounding the cytoplasm that gives | ||
+ | the cell its shape, selectively allows the passage of molecules into and out of | ||
+ | the cytoplasm, and protects the cell</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"iIaRvdN8","properties":{"formattedCitation":"\\super | ||
+ | 1\\nosupersub{}","plainCitation":"1","noteIndex":0},"citationItems":[{"id":614,"uris":["http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM"],"itemData":{"id":614,"type":"article-journal","abstract":"The | ||
+ | bacteria cell envelope is a complex multilayered structure that serves to | ||
+ | protect these organisms from their unpredictable and often hostile environment. | ||
+ | The cell envelopes of most bacteria fall into one of two major groups. | ||
+ | Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which | ||
+ | itself is surrounded by an outer membrane containing lipopolysaccharide. | ||
+ | Gram-positive bacteria lack an outer membrane but are surrounded by layers of | ||
+ | peptidoglycan many times thicker than is found in the Gram-negatives. Threading | ||
+ | through these layers of peptidoglycan are long anionic polymers, called | ||
+ | teichoic acids. The composition and organization of these envelope layers and | ||
+ | recent insights into the mechanisms of cell envelope assembly are | ||
+ | discussed.","container-title":"Cold Spring Harbor | ||
+ | Perspectives in Biology","DOI":"10.1101/cshperspect.a000414","ISSN":", | ||
+ | 1943-0264","issue":"5","journalAbbreviation":"Cold | ||
+ | Spring Harb Perspect | ||
+ | Biol","language":"en","note":"Company: | ||
+ | Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory | ||
+ | Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring | ||
+ | Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID: | ||
+ | 20452953","page":"a000414","source":"cshperspectives.cshlp.org","title":"The | ||
+ | Bacterial Cell Envelope","URL":"http://cshperspectives.cshlp.org/content/2/5/a000414","volume":"2","author":[{"family":"Silhavy","given":"Thomas | ||
+ | J."},{"family":"Kahne","given":"Daniel"},{"family":"Walker","given":"Suzanne"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",1,5]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>1</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE><span | ||
+ | style='background:white;mso-highlight:white'>Silhavy</span></span><span | ||
+ | style='background:white;mso-highlight:white'>, <span class=SpellE>Kahne</span>, | ||
+ | & Walker, 2010). The bacteria fall into two groups, depending on their cell | ||
+ | envelope: Gram-negative bacteria and Gram-positive bacteria. <i | ||
+ | style='mso-bidi-font-style:normal'>E. coli'' is an example of a Gram-negative | ||
+ | bacteria</span></span><!--[if supportFields]><span lang=EN style='font-size: | ||
+ | 12.0pt;line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman";background:white;mso-highlight:white'><span style='mso-element: | ||
+ | field-begin'></span> ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"CJIH8jEe","properties":{"formattedCitation":"\\super | ||
+ | 1\\nosupersub{}","plainCitation":"1","noteIndex":0},"citationItems":[{"id":614,"uris":["http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM"],"itemData":{"id":614,"type":"article-journal","abstract":"The | ||
+ | bacteria cell envelope is a complex multilayered structure that serves to | ||
+ | protect these organisms from their unpredictable and often hostile environment. | ||
+ | The cell envelopes of most bacteria fall into one of two major groups. | ||
+ | Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which | ||
+ | itself is surrounded by an outer membrane containing lipopolysaccharide. | ||
+ | Gram-positive bacteria lack an outer membrane but are surrounded by layers of | ||
+ | peptidoglycan many times thicker than is found in the Gram-negatives. Threading | ||
+ | through these layers of peptidoglycan are long anionic polymers, called | ||
+ | teichoic acids. The composition and organization of these envelope layers and | ||
+ | recent insights into the mechanisms of cell envelope assembly are | ||
+ | discussed.","container-title":"Cold Spring Harbor | ||
+ | Perspectives in | ||
+ | Biology","DOI":"10.1101/cshperspect.a000414","ISSN":", | ||
+ | 1943-0264","issue":"5","journalAbbreviation":"Cold | ||
+ | Spring Harb Perspect | ||
+ | Biol","language":"en","note":"Company: | ||
+ | Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory | ||
+ | Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring | ||
+ | Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID: | ||
+ | 20452953","page":"a000414","source":"cshperspectives.cshlp.org","title":"The | ||
+ | Bacterial Cell | ||
+ | Envelope","URL":"http://cshperspectives.cshlp.org/content/2/5/a000414","volume":"2","author":[{"family":"Silhavy","given":"Thomas | ||
+ | J."},{"family":"Kahne","given":"Daniel"},{"family":"Walker","given":"Suzanne"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",1,5]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>1</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-end'></span></span><![endif]--><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'> | ||
+ | (<span class=SpellE>Silhavy</span>, <span class=SpellE>Kahne</span>, & | ||
+ | Walker, 2010).<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><i style='mso-bidi-font-style:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'>E. | ||
+ | coli</span>''<span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | background:white;mso-highlight:white'>’s cell envelope, shown in figure X, | ||
+ | consists of an inner membrane (IM), a peptidoglycan cell wall, and an outer | ||
+ | membrane (OM) which is unique to Gram-negative bacteria</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-begin'></span> ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"k70Th6wE","properties":{"formattedCitation":"\\super | ||
+ | 1\\nosupersub{}","plainCitation":"1","noteIndex":0},"citationItems":[{"id":614,"uris":["http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM"],"itemData":{"id":614,"type":"article-journal","abstract":"The | ||
+ | bacteria cell envelope is a complex multilayered structure that serves to | ||
+ | protect these organisms from their unpredictable and often hostile environment. | ||
+ | The cell envelopes of most bacteria fall into one of two major groups. | ||
+ | Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which | ||
+ | itself is surrounded by an outer membrane containing lipopolysaccharide. | ||
+ | Gram-positive bacteria lack an outer membrane but are surrounded by layers of | ||
+ | peptidoglycan many times thicker than is found in the Gram-negatives. Threading | ||
+ | through these layers of peptidoglycan are long anionic polymers, called | ||
+ | teichoic acids. The composition and organization of these envelope layers and | ||
+ | recent insights into the mechanisms of cell envelope assembly are | ||
+ | discussed.","container-title":"Cold Spring Harbor | ||
+ | Perspectives in | ||
+ | Biology","DOI":"10.1101/cshperspect.a000414","ISSN":", | ||
+ | 1943-0264","issue":"5","journalAbbreviation":"Cold | ||
+ | Spring Harb Perspect | ||
+ | Biol","language":"en","note":"Company: | ||
+ | Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory | ||
+ | Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring | ||
+ | Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID: | ||
+ | 20452953","page":"a000414","source":"cshperspectives.cshlp.org","title":"The | ||
+ | Bacterial Cell | ||
+ | Envelope","URL":"http://cshperspectives.cshlp.org/content/2/5/a000414","volume":"2","author":[{"family":"Silhavy","given":"Thomas | ||
+ | J."},{"family":"Kahne","given":"Daniel"},{"family":"Walker","given":"Suzanne"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",1,5]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>1</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-end'></span></span><![endif]--><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'> | ||
+ | (<span class=SpellE>Silhavy</span>, <span class=SpellE>Kahne</span>, & | ||
+ | Walker, 2010). The IM is a phospholipid (PL) bilayer</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-begin'></span> ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"B661XGj7","properties":{"formattedCitation":"\\super | ||
+ | 2\\nosupersub{}","plainCitation":"2","noteIndex":0},"citationItems":[{"id":617,"uris":["http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M"],"itemData":{"id":617,"type":"article-journal","abstract":"PbgA | ||
+ | proteins controls lipopolysaccharide synthesis in Escherichia | ||
+ | coli.","container-title":"Nature","DOI":"10.1038/d41586-020-02256-x","issue":"7821","language":"en","license":"2021 | ||
+ | Nature","note":"Bandiera_abtest: a\nCg_type: News And | ||
+ | Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term: | ||
+ | Structural biology, | ||
+ | Microbiology","page":"348-349","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of a lipopolysaccharide regulator reveals a road to new | ||
+ | antibiotics","URL":"http://www.nature.com/articles/d41586-020-02256-x","volume":"584","author":[{"family":"Bishop","given":"Russell | ||
+ | E."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>2</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-end'></span></span><![endif]--><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'> | ||
+ | (Bishop, 2020). Proteins responsible for energy production, lipid biosynthesis, | ||
+ | protein secretion, and transport are located in the IM due to a lack of | ||
+ | intracellular organelles</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-begin'></span> ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"mcVZ8LiH","properties":{"formattedCitation":"\\super | ||
+ | 1,2\\nosupersub{}","plainCitation":"1,2","noteIndex":0},"citationItems":[{"id":614,"uris":["http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM"],"itemData":{"id":614,"type":"article-journal","abstract":"The | ||
+ | bacteria cell envelope is a complex multilayered structure that serves to protect | ||
+ | these organisms from their unpredictable and often hostile environment. The | ||
+ | cell envelopes of most bacteria fall into one of two major groups. | ||
+ | Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which | ||
+ | itself is surrounded by an outer membrane containing lipopolysaccharide. | ||
+ | Gram-positive bacteria lack an outer membrane but are surrounded by layers of | ||
+ | peptidoglycan many times thicker than is found in the Gram-negatives. Threading | ||
+ | through these layers of peptidoglycan are long anionic polymers, called | ||
+ | teichoic acids. The composition and organization of these envelope layers and | ||
+ | recent insights into the mechanisms of cell envelope assembly are | ||
+ | discussed.","container-title":"Cold Spring Harbor | ||
+ | Perspectives in Biology","DOI":"10.1101/cshperspect.a000414","ISSN":", | ||
+ | 1943-0264","issue":"5","journalAbbreviation":"Cold | ||
+ | Spring Harb Perspect | ||
+ | Biol","language":"en","note":"Company: | ||
+ | Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory | ||
+ | Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring | ||
+ | Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID: | ||
+ | 20452953","page":"a000414","source":"cshperspectives.cshlp.org","title":"The | ||
+ | Bacterial Cell | ||
+ | Envelope","URL":"http://cshperspectives.cshlp.org/content/2/5/a000414","volume":"2","author":[{"family":"Silhavy","given":"Thomas | ||
+ | J."},{"family":"Kahne","given":"Daniel"},{"family":"Walker","given":"Suzanne"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",1,5]]}}},{"id":617,"uris":["http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M"],"itemData":{"id":617,"type":"article-journal","abstract":"PbgA | ||
+ | proteins controls lipopolysaccharide synthesis in Escherichia | ||
+ | coli.","container-title":"Nature","DOI":"10.1038/d41586-020-02256-x","issue":"7821","language":"en","license":"2021 | ||
+ | Nature","note":"Bandiera_abtest: a\nCg_type: News And | ||
+ | Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term: | ||
+ | Structural biology, Microbiology","page":"348-349","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of a lipopolysaccharide regulator reveals a road to new | ||
+ | antibiotics","URL":"http://www.nature.com/articles/d41586-020-02256-x","volume":"584","author":[{"family":"Bishop","given":"Russell | ||
+ | E."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>1,2</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-end'></span></span><![endif]--><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'> | ||
+ | (Bishop, 2020; <span class=SpellE>Silhavy</span>, <span class=SpellE>Kahne</span>, | ||
+ | & Walker, 2010). The peptidoglycan cell wall, found in the periplasmic | ||
+ | space between the IM and OM, is made up of repeating units of the disaccharide | ||
+ | N-acetyl glucosamine-N-acetyl muramic acid (NAG-NAM), cross-linked by | ||
+ | pentapeptide side chains</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-begin'></span> ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"jhF990s7","properties":{"formattedCitation":"\\super | ||
+ | 1,3\\nosupersub{}","plainCitation":"1,3","noteIndex":0},"citationItems":[{"id":614,"uris":["http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM"],"itemData":{"id":614,"type":"article-journal","abstract":"The | ||
+ | bacteria cell envelope is a complex multilayered structure that serves to | ||
+ | protect these organisms from their unpredictable and often hostile environment. | ||
+ | The cell envelopes of most bacteria fall into one of two major groups. | ||
+ | Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which | ||
+ | itself is surrounded by an outer membrane containing lipopolysaccharide. | ||
+ | Gram-positive bacteria lack an outer membrane but are surrounded by layers of | ||
+ | peptidoglycan many times thicker than is found in the Gram-negatives. Threading | ||
+ | through these layers of peptidoglycan are long anionic polymers, called | ||
+ | teichoic acids. The composition and organization of these envelope layers and | ||
+ | recent insights into the mechanisms of cell envelope assembly are | ||
+ | discussed.","container-title":"Cold Spring Harbor | ||
+ | Perspectives in | ||
+ | Biology","DOI":"10.1101/cshperspect.a000414","ISSN":", | ||
+ | 1943-0264","issue":"5","journalAbbreviation":"Cold | ||
+ | Spring Harb Perspect | ||
+ | Biol","language":"en","note":"Company: | ||
+ | Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory | ||
+ | Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring | ||
+ | Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID: | ||
+ | 20452953","page":"a000414","source":"cshperspectives.cshlp.org","title":"The | ||
+ | Bacterial Cell | ||
+ | Envelope","URL":"http://cshperspectives.cshlp.org/content/2/5/a000414","volume":"2","author":[{"family":"Silhavy","given":"Thomas | ||
+ | J."},{"family":"Kahne","given":"Daniel"},{"family":"Walker","given":"Suzanne"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",1,5]]}}},{"id":619,"uris":["http://zotero.org/users/local/DWdd4k1w/items/HWCQ9FUI"],"itemData":{"id":619,"type":"article-journal","abstract":"Gram-negative | ||
+ | bacteria are surrounded by a complex cell envelope that includes two membranes. | ||
+ | The outer membrane prevents many drugs from entering these cells and is thus a | ||
+ | major determinant of their intrinsic antibiotic resistance. This barrier | ||
+ | function is imparted by the asymmetric architecture of the membrane with | ||
+ | lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner | ||
+ | leaflet. The LPS and phospholipid synthesis pathways share an intermediate. | ||
+ | Proper membrane biogenesis therefore requires that the flux through each | ||
+ | pathway be balanced. In Escherichia coli, a major control point in establishing | ||
+ | this balance is the committed step of LPS synthesis mediated by LpxC. Levels of | ||
+ | this enzyme are controlled through its degradation by the inner membrane | ||
+ | protease FtsH and its presumed adapter protein LapB (YciM). How turnover of | ||
+ | LpxC is controlled has remained unclear for many years. Here, we demonstrate | ||
+ | that the essential protein of unknown function YejM (PbgA) participates in this | ||
+ | regulatory pathway. Suppressors of YejM essentiality were identified in lpxC | ||
+ | and lapB, and LpxC overproduction was shown to be sufficient to allow survival | ||
+ | of ΔyejM mutants. Furthermore, the stability of LpxC was shown to be | ||
+ | reduced in cells lacking YejM, and genetic and physical interactions between | ||
+ | LapB and YejM were detected. Taken together, our results are consistent with a | ||
+ | model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate | ||
+ | LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane | ||
+ | is a major determinant of the intrinsic antibiotic resistance of Gram-negative | ||
+ | bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid, and | ||
+ | the synthesis of these lipid species must be balanced for the membrane to | ||
+ | maintain its barrier function in blocking drug entry. In this study, we | ||
+ | identified an essential protein of unknown function as a key new factor in | ||
+ | modulating LPS synthesis in the model bacterium Escherichia coli. Our results | ||
+ | provide novel insight into how this organism and most likely other | ||
+ | Gram-negative bacteria maintain membrane homeostasis and their intrinsic | ||
+ | resistance to | ||
+ | antibiotics.","container-title":"mBio","DOI":"10.1128/mBio.00939-20","issue":"3","note":"publisher: | ||
+ | American Society for Microbiology","page":"e00939-20","source":"journals.asm.org | ||
+ | (Atypon)","title":"An Essential Membrane Protein Modulates | ||
+ | the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia | ||
+ | coli","URL":"https://journals.asm.org/doi/10.1128/mBio.00939-20","volume":"11","author":[{"family":"Fivenson","given":"Elayne | ||
+ | M."},{"family":"Bernhardt","given":"Thomas | ||
+ | G."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",5,19]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>1,3</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-end'></span></span><![endif]--><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Fivenson</span>, | ||
+ | & Bernhardt, 2020; <span class=SpellE>Silhavy</span>, <span class=SpellE>Kahne</span>, | ||
+ | & Walker, 2010). This rigid cell wall is responsible for the maintenance of | ||
+ | <i style='mso-bidi-font-style:normal'>E. coli''’s characteristic rod shape</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"QysnGSot","properties":{"formattedCitation":"\\super | ||
+ | 1\\nosupersub{}","plainCitation":"1","noteIndex":0},"citationItems":[{"id":614,"uris":["http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM"],"itemData":{"id":614,"type":"article-journal","abstract":"The | ||
+ | bacteria cell envelope is a complex multilayered structure that serves to | ||
+ | protect these organisms from their unpredictable and often hostile environment. | ||
+ | The cell envelopes of most bacteria fall into one of two major groups. | ||
+ | Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which | ||
+ | itself is surrounded by an outer membrane containing lipopolysaccharide. | ||
+ | Gram-positive bacteria lack an outer membrane but are surrounded by layers of | ||
+ | peptidoglycan many times thicker than is found in the Gram-negatives. Threading | ||
+ | through these layers of peptidoglycan are long anionic polymers, called | ||
+ | teichoic acids. The composition and organization of these envelope layers and | ||
+ | recent insights into the mechanisms of cell envelope assembly are | ||
+ | discussed.","container-title":"Cold Spring Harbor | ||
+ | Perspectives in | ||
+ | Biology","DOI":"10.1101/cshperspect.a000414","ISSN":", | ||
+ | 1943-0264","issue":"5","journalAbbreviation":"Cold | ||
+ | Spring Harb Perspect | ||
+ | Biol","language":"en","note":"Company: | ||
+ | Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory | ||
+ | Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring | ||
+ | Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID: | ||
+ | 20452953","page":"a000414","source":"cshperspectives.cshlp.org","title":"The | ||
+ | Bacterial Cell | ||
+ | Envelope","URL":"http://cshperspectives.cshlp.org/content/2/5/a000414","volume":"2","author":[{"family":"Silhavy","given":"Thomas | ||
+ | J."},{"family":"Kahne","given":"Daniel"},{"family":"Walker","given":"Suzanne"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",1,5]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>1</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Silhavy</span>, | ||
+ | <span class=SpellE>Kahne</span>, & Walker, 2010). The peptidoglycan layer | ||
+ | is connected to the OM through a lipoprotein, murein/Braun’s lipoprotein (<span | ||
+ | class=SpellE>Lpp</span>)</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"ExJWWN7s","properties":{"formattedCitation":"\\super | ||
+ | 1\\nosupersub{}","plainCitation":"1","noteIndex":0},"citationItems":[{"id":614,"uris":["http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM"],"itemData":{"id":614,"type":"article-journal","abstract":"The | ||
+ | bacteria cell envelope is a complex multilayered structure that serves to | ||
+ | protect these organisms from their unpredictable and often hostile environment. | ||
+ | The cell envelopes of most bacteria fall into one of two major groups. | ||
+ | Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which | ||
+ | itself is surrounded by an outer membrane containing lipopolysaccharide. | ||
+ | Gram-positive bacteria lack an outer membrane but are surrounded by layers of | ||
+ | peptidoglycan many times thicker than is found in the Gram-negatives. Threading | ||
+ | through these layers of peptidoglycan are long anionic polymers, called | ||
+ | teichoic acids. The composition and organization of these envelope layers and | ||
+ | recent insights into the mechanisms of cell envelope assembly are | ||
+ | discussed.","container-title":"Cold Spring Harbor | ||
+ | Perspectives in | ||
+ | Biology","DOI":"10.1101/cshperspect.a000414","ISSN":", | ||
+ | 1943-0264","issue":"5","journalAbbreviation":"Cold | ||
+ | Spring Harb Perspect | ||
+ | Biol","language":"en","note":"Company: | ||
+ | Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory | ||
+ | Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring | ||
+ | Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID: | ||
+ | 20452953","page":"a000414","source":"cshperspectives.cshlp.org","title":"The | ||
+ | Bacterial Cell | ||
+ | Envelope","URL":"http://cshperspectives.cshlp.org/content/2/5/a000414","volume":"2","author":[{"family":"Silhavy","given":"Thomas | ||
+ | J."},{"family":"Kahne","given":"Daniel"},{"family":"Walker","given":"Suzanne"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",1,5]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>1</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Silhavy</span>, | ||
+ | <span class=SpellE>Kahne</span>, & Walker, 2010). The OM is an asymmetric | ||
+ | lipid bilayer that is essential for <i style='mso-bidi-font-style:normal'>E.coli''’s | ||
+ | survival because it acts as the first line of <span class=SpellE>defence</span> | ||
+ | against external threats</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"G4EUP7vu","properties":{"formattedCitation":"\\super | ||
+ | 1,2\\nosupersub{}","plainCitation":"1,2","noteIndex":0},"citationItems":[{"id":614,"uris":["http://zotero.org/users/local/DWdd4k1w/items/H9G2P5QM"],"itemData":{"id":614,"type":"article-journal","abstract":"The | ||
+ | bacteria cell envelope is a complex multilayered structure that serves to | ||
+ | protect these organisms from their unpredictable and often hostile environment. | ||
+ | The cell envelopes of most bacteria fall into one of two major groups. | ||
+ | Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which | ||
+ | itself is surrounded by an outer membrane containing lipopolysaccharide. | ||
+ | Gram-positive bacteria lack an outer membrane but are surrounded by layers of | ||
+ | peptidoglycan many times thicker than is found in the Gram-negatives. Threading | ||
+ | through these layers of peptidoglycan are long anionic polymers, called | ||
+ | teichoic acids. The composition and organization of these envelope layers and | ||
+ | recent insights into the mechanisms of cell envelope assembly are | ||
+ | discussed.","container-title":"Cold Spring Harbor | ||
+ | Perspectives in | ||
+ | Biology","DOI":"10.1101/cshperspect.a000414","ISSN":", | ||
+ | 1943-0264","issue":"5","journalAbbreviation":"Cold | ||
+ | Spring Harb Perspect | ||
+ | Biol","language":"en","note":"Company: | ||
+ | Cold Spring Harbor Laboratory Press\nDistributor: Cold Spring Harbor Laboratory | ||
+ | Press\nInstitution: Cold Spring Harbor Laboratory Press\nLabel: Cold Spring | ||
+ | Harbor Laboratory Press\npublisher: Cold Spring Harbor Lab\nPMID: | ||
+ | 20452953","page":"a000414","source":"cshperspectives.cshlp.org","title":"The | ||
+ | Bacterial Cell | ||
+ | Envelope","URL":"http://cshperspectives.cshlp.org/content/2/5/a000414","volume":"2","author":[{"family":"Silhavy","given":"Thomas | ||
+ | J."},{"family":"Kahne","given":"Daniel"},{"family":"Walker","given":"Suzanne"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",1,5]]}}},{"id":617,"uris":["http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M"],"itemData":{"id":617,"type":"article-journal","abstract":"PbgA | ||
+ | proteins controls lipopolysaccharide synthesis in Escherichia | ||
+ | coli.","container-title":"Nature","DOI":"10.1038/d41586-020-02256-x","issue":"7821","language":"en","license":"2021 | ||
+ | Nature","note":"Bandiera_abtest: a\nCg_type: News And | ||
+ | Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term: | ||
+ | Structural biology, | ||
+ | Microbiology","page":"348-349","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of a lipopolysaccharide regulator reveals a road to new | ||
+ | antibiotics","URL":"http://www.nature.com/articles/d41586-020-02256-x","volume":"584","author":[{"family":"Bishop","given":"Russell | ||
+ | E."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>1,2</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Bishop, 2020; <span class=SpellE>Silhavy</span>, | ||
+ | <span class=SpellE>Kahne</span>, & Walker, 2010). It prevents the entry or | ||
+ | exit of large, hydrophobic molecules and works together with the peptidoglycan | ||
+ | cell wall to provide mechanical strength to the bacterial cell, protecting it | ||
+ | from osmotic lysis</span><!--[if supportFields]><span lang=EN style='font-size: | ||
+ | 12.0pt;line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"Pm7E79sY","properties":{"formattedCitation":"\\super | ||
+ | 4\\nosupersub{}","plainCitation":"4","noteIndex":0},"citationItems":[{"id":621,"uris":["http://zotero.org/users/local/DWdd4k1w/items/D7M3VN8M"],"itemData":{"id":621,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | (LPS) is an essential glycolipid present in the outer membrane (OM) of many | ||
+ | Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell | ||
+ | viability; too little LPS weakens the OM, while too much LPS is lethal. In | ||
+ | Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, | ||
+ | which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, | ||
+ | we provide evidence that activity of the YciM/FtsH protease complex is | ||
+ | inhibited by the essential protein YejM. Using strains in which LpxC activity | ||
+ | is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM | ||
+ | acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies | ||
+ | have shown that this toxicity can be suppressed by deleting lpp, which codes | ||
+ | for a highly abundant OM lipoprotein. It was assumed that deletion of lpp | ||
+ | restores lipid balance by increasing the number of acyl chains available for | ||
+ | glycerophospholipid biosynthesis. We show that this is not the case. Rather, | ||
+ | our data suggest that preventing attachment of lpp to the peptidoglycan | ||
+ | sacculus allows excess LPS to be shed in vesicles. We propose that this loss of | ||
+ | OM material allows continued transport of LPS to the OM, thus preventing lethal | ||
+ | accumulation of LPS within the inner membrane. Overall, our data justify the | ||
+ | commitment of three essential inner membrane proteins to avoid toxic over- or | ||
+ | underproduction of LPS.\nIMPORTANCE Gram-negative bacteria are encapsulated by | ||
+ | an outer membrane (OM) that is impermeable to large and hydrophobic molecules. | ||
+ | As such, these bacteria are intrinsically resistant to several clinically | ||
+ | relevant antibiotics. To better understand how the OM is established or | ||
+ | maintained, we sought to clarify the function of the essential protein YejM in | ||
+ | Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH | ||
+ | protease complex, which regulates synthesis of the essential OM glycolipid | ||
+ | lipopolysaccharide (LPS). Our data suggest that disrupting proper communication | ||
+ | between LPS synthesis and transport to the OM leads to accumulation of LPS | ||
+ | within the inner membrane (IM). The lethality associated with this event can be | ||
+ | suppressed by increasing OM vesiculation. Our research has identified a | ||
+ | completely novel signaling pathway that we propose coordinates LPS synthesis | ||
+ | and | ||
+ | transport.","container-title":"mBio","DOI":"10.1128/mBio.00598-20","issue":"2","note":"publisher: | ||
+ | American Society for Microbiology","page":"e00598-20","source":"journals.asm.org | ||
+ | (Atypon)","title":"YejM Modulates Activity of the YciM/FtsH | ||
+ | Protease Complex To Prevent Lethal Accumulation of | ||
+ | Lipopolysaccharide","URL":"https://journals.asm.org/doi/10.1128/mBio.00598-20","volume":"11","author":[{"family":"Guest","given":"Randi | ||
+ | L."},{"family":"Samé | ||
+ | Guerra","given":"Daniel"},{"family":"Wissler","given":"Maria"},{"family":"Grimm","given":"Jacqueline"},{"family":"Silhavy","given":"Thomas | ||
+ | J."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",4,14]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>4</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Guest et al., 2020). The OM is | ||
+ | made of PLs in the inner leaflet and lipopolysaccharide (LPS) glycolipid | ||
+ | molecules in the outer leaflet</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"jGfiKmxu","properties":{"formattedCitation":"\\super | ||
+ | 5\\nosupersub{}","plainCitation":"5","noteIndex":0},"citationItems":[{"id":623,"uris":["http://zotero.org/users/local/DWdd4k1w/items/HUNH4ZWD"],"itemData":{"id":623,"type":"article-journal","abstract":"The | ||
+ | cell envelope is the first line of defense between a bacterium and the | ||
+ | world-at-large. Often, the initial steps that determine the outcome of chemical | ||
+ | warfare, bacteriophage infections, and battles with other bacteria or the | ||
+ | immune system greatly depend on the structure and composition of the bacterial | ||
+ | cell surface. One of the most studied bacterial surface molecules is the | ||
+ | glycolipid known as lipopolysaccharide (LPS), which is produced by most | ||
+ | Gram-negative bacteria. Much of the initial attention LPS received in the early | ||
+ | 1900s was owed to its ability to stimulate the immune system, for which the | ||
+ | glycolipid was commonly known as endotoxin. It was later discovered that LPS | ||
+ | also creates a permeability barrier at the cell surface and is a main | ||
+ | contributor to the innate resistance that Gram-negative bacteria display | ||
+ | against many antimicrobials. Not surprisingly, these important properties of | ||
+ | LPS have driven a vast and still prolific body of literature for more than a | ||
+ | hundred years. LPS research has also led to pioneering studies in bacterial envelope | ||
+ | biogenesis and physiology, mostly using Escherichia coli and Salmonella as | ||
+ | model systems. In this review, we will focus on the fundamental knowledge we | ||
+ | have gained from studies of the complex structure of the LPS molecule and the | ||
+ | biochemical pathways for its synthesis, as well as the transport of LPS across | ||
+ | the bacterial envelope and its assembly at the cell | ||
+ | surface.","container-title":"EcoSal | ||
+ | Plus","DOI":"10.1128/ecosalplus.ESP-0001-2018","issue":"1","note":"publisher: | ||
+ | American Society for Microbiology","source":"journals.asm.org | ||
+ | (Atypon)","title":"Function and Biogenesis of | ||
+ | Lipopolysaccharides","URL":"https://journals.asm.org/doi/10.1128/ecosalplus.ESP-0001-2018","volume":"8","author":[{"family":"Bertani","given":"Blake"},{"family":"Ruiz","given":"Natividad"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2018",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>5</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Bertani & Ruiz, 2018). The OM | ||
+ | also consists of <span style='background:white;mso-highlight:white'>OM proteins | ||
+ | (<span class=SpellE>Omps</span>), exopolysaccharides (EPS), flagella and type I | ||
+ | fimbria</span></span><!--[if supportFields]><span lang=EN style='font-size: | ||
+ | 12.0pt;line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman";background:white;mso-highlight:white'><span style='mso-element: | ||
+ | field-begin'></span> ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"cseFSYyV","properties":{"formattedCitation":"\\super | ||
+ | 6\\nosupersub{}","plainCitation":"6","noteIndex":0},"citationItems":[{"id":625,"uris":["http://zotero.org/users/local/DWdd4k1w/items/5RDB5DKM"],"itemData":{"id":625,"type":"article-journal","abstract":"Escherichia | ||
+ | coli is generally used as model bacteria to define microbial cell factories for | ||
+ | many products and to investigate regulation mechanisms. E. coli exhibits | ||
+ | phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae | ||
+ | on the outer membrane which is a self-protective barrier and closely related to | ||
+ | cellular morphology, growth, phenotypes and stress adaptation. However, these | ||
+ | outer membrane associated molecules could also lead to potential contamination | ||
+ | and insecurity for fermentation products and consume lots of nutrients and | ||
+ | energy sources. Therefore, understanding critical insights of these membrane | ||
+ | associated molecules is necessary for building better microbial producers. Here | ||
+ | the biosynthesis, function, influences, and current membrane engineering | ||
+ | applications of these outer membrane associated molecules were reviewed from | ||
+ | the perspective of synthetic biology, and the potential and effective | ||
+ | engineering strategies on the outer membrane to improve fermentation features | ||
+ | for microbial cell factories were | ||
+ | suggested.","container-title":"Microbial Cell | ||
+ | Factories","DOI":"10.1186/s12934-021-01565-8","ISSN":"1475-2859","issue":"1","journalAbbreviation":"Microbial | ||
+ | Cell Factories","page":"73","source":"BioMed | ||
+ | Central","title":"Insights into the structure of | ||
+ | Escherichia coli outer membrane as the target for engineering microbial cell | ||
+ | factories","URL":"https://doi.org/10.1186/s12934-021-01565-8","volume":"20","author":[{"family":"Wang","given":"Jianli"},{"family":"Ma","given":"Wenjian"},{"family":"Wang","given":"Xiaoyuan"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2021",3,20]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>6</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-end'></span></span><![endif]--><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'> | ||
+ | (Wang, Ma, & Wang, 2021). EPS, flagella, and fimbria are nonessential | ||
+ | structures; therefore, they are not present in all <i style='mso-bidi-font-style: | ||
+ | normal'>E. coli'' strains</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-begin'></span> ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"NU8TNhlB","properties":{"formattedCitation":"\\super | ||
+ | 6\\nosupersub{}","plainCitation":"6","noteIndex":0},"citationItems":[{"id":625,"uris":["http://zotero.org/users/local/DWdd4k1w/items/5RDB5DKM"],"itemData":{"id":625,"type":"article-journal","abstract":"Escherichia | ||
+ | coli is generally used as model bacteria to define microbial cell factories for | ||
+ | many products and to investigate regulation mechanisms. E. coli exhibits | ||
+ | phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae | ||
+ | on the outer membrane which is a self-protective barrier and closely related to | ||
+ | cellular morphology, growth, phenotypes and stress adaptation. However, these | ||
+ | outer membrane associated molecules could also lead to potential contamination | ||
+ | and insecurity for fermentation products and consume lots of nutrients and | ||
+ | energy sources. Therefore, understanding critical insights of these membrane | ||
+ | associated molecules is necessary for building better microbial producers. Here | ||
+ | the biosynthesis, function, influences, and current membrane engineering | ||
+ | applications of these outer membrane associated molecules were reviewed from | ||
+ | the perspective of synthetic biology, and the potential and effective | ||
+ | engineering strategies on the outer membrane to improve fermentation features | ||
+ | for microbial cell factories were | ||
+ | suggested.","container-title":"Microbial Cell | ||
+ | Factories","DOI":"10.1186/s12934-021-01565-8","ISSN":"1475-2859","issue":"1","journalAbbreviation":"Microbial | ||
+ | Cell | ||
+ | Factories","page":"73","source":"BioMed | ||
+ | Central","title":"Insights into the structure of | ||
+ | Escherichia coli outer membrane as the target for engineering microbial cell | ||
+ | factories","URL":"https://doi.org/10.1186/s12934-021-01565-8","volume":"20","author":[{"family":"Wang","given":"Jianli"},{"family":"Ma","given":"Wenjian"},{"family":"Wang","given":"Xiaoyuan"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2021",3,20]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>6</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-end'></span></span><![endif]--><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'> | ||
+ | (Wang, Ma, & Wang, 2021). There are three important <span class=SpellE>Omps</span>: | ||
+ | <span class=SpellE>OmpC</span>, <span class=SpellE>OmpF</span>, and OmpA</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-begin'></span> ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"6h9AoQlU","properties":{"formattedCitation":"\\super | ||
+ | 6\\nosupersub{}","plainCitation":"6","noteIndex":0},"citationItems":[{"id":625,"uris":["http://zotero.org/users/local/DWdd4k1w/items/5RDB5DKM"],"itemData":{"id":625,"type":"article-journal","abstract":"Escherichia | ||
+ | coli is generally used as model bacteria to define microbial cell factories for | ||
+ | many products and to investigate regulation mechanisms. E. coli exhibits | ||
+ | phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae | ||
+ | on the outer membrane which is a self-protective barrier and closely related to | ||
+ | cellular morphology, growth, phenotypes and stress adaptation. However, these | ||
+ | outer membrane associated molecules could also lead to potential contamination | ||
+ | and insecurity for fermentation products and consume lots of nutrients and | ||
+ | energy sources. Therefore, understanding critical insights of these membrane | ||
+ | associated molecules is necessary for building better microbial producers. Here | ||
+ | the biosynthesis, function, influences, and current membrane engineering | ||
+ | applications of these outer membrane associated molecules were reviewed from | ||
+ | the perspective of synthetic biology, and the potential and effective | ||
+ | engineering strategies on the outer membrane to improve fermentation features | ||
+ | for microbial cell factories were | ||
+ | suggested.","container-title":"Microbial Cell | ||
+ | Factories","DOI":"10.1186/s12934-021-01565-8","ISSN":"1475-2859","issue":"1","journalAbbreviation":"Microbial | ||
+ | Cell | ||
+ | Factories","page":"73","source":"BioMed | ||
+ | Central","title":"Insights into the structure of | ||
+ | Escherichia coli outer membrane as the target for engineering microbial cell | ||
+ | factories","URL":"https://doi.org/10.1186/s12934-021-01565-8","volume":"20","author":[{"family":"Wang","given":"Jianli"},{"family":"Ma","given":"Wenjian"},{"family":"Wang","given":"Xiaoyuan"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2021",3,20]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>6</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-end'></span></span><![endif]--><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'> | ||
+ | (Wang, Ma, & Wang, 2021). <span class=SpellE>OmpC</span> and <span | ||
+ | class=SpellE>OmpF</span> regulate the entry of small molecule solutes into the | ||
+ | cytoplasm while <span class=SpellE>OmpA</span> maintains <i style='mso-bidi-font-style: | ||
+ | normal'>E. coli''’s cell surface integrity</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-begin'></span> ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"84c6pWvo","properties":{"formattedCitation":"\\super | ||
+ | 6\\nosupersub{}","plainCitation":"6","noteIndex":0},"citationItems":[{"id":625,"uris":["http://zotero.org/users/local/DWdd4k1w/items/5RDB5DKM"],"itemData":{"id":625,"type":"article-journal","abstract":"Escherichia | ||
+ | coli is generally used as model bacteria to define microbial cell factories for | ||
+ | many products and to investigate regulation mechanisms. E. coli exhibits | ||
+ | phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae | ||
+ | on the outer membrane which is a self-protective barrier and closely related to | ||
+ | cellular morphology, growth, phenotypes and stress adaptation. However, these | ||
+ | outer membrane associated molecules could also lead to potential contamination | ||
+ | and insecurity for fermentation products and consume lots of nutrients and | ||
+ | energy sources. Therefore, understanding critical insights of these membrane | ||
+ | associated molecules is necessary for building better microbial producers. Here | ||
+ | the biosynthesis, function, influences, and current membrane engineering | ||
+ | applications of these outer membrane associated molecules were reviewed from | ||
+ | the perspective of synthetic biology, and the potential and effective | ||
+ | engineering strategies on the outer membrane to improve fermentation features | ||
+ | for microbial cell factories were suggested.","container-title":"Microbial | ||
+ | Cell | ||
+ | Factories","DOI":"10.1186/s12934-021-01565-8","ISSN":"1475-2859","issue":"1","journalAbbreviation":"Microbial | ||
+ | Cell Factories","page":"73","source":"BioMed | ||
+ | Central","title":"Insights into the structure of | ||
+ | Escherichia coli outer membrane as the target for engineering microbial cell | ||
+ | factories","URL":"https://doi.org/10.1186/s12934-021-01565-8","volume":"20","author":[{"family":"Wang","given":"Jianli"},{"family":"Ma","given":"Wenjian"},{"family":"Wang","given":"Xiaoyuan"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2021",3,20]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>6</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-end'></span></span><![endif]--><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'> | ||
+ | (Wang, Ma, & Wang, 2021). <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | mso-no-proof:yes'><!--[if gte vml 1]><v:shapetype id="_x0000_t75" coordsize="21600,21600" | ||
+ | o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" | ||
+ | stroked="f"><v:stroke joinstyle="miter"/><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"/><v:f eqn="sum @0 1 0"/><v:f eqn="sum 0 0 @1"/><v:f eqn="prod @2 1 2"/><v:f eqn="prod @3 21600 pixelWidth"/><v:f eqn="prod @3 21600 pixelHeight"/><v:f eqn="sum @0 0 1"/><v:f eqn="prod @6 1 2"/><v:f eqn="prod @7 21600 pixelWidth"/><v:f eqn="sum @8 21600 0"/><v:f eqn="prod @7 21600 pixelHeight"/><v:f eqn="sum @10 21600 0"/></v:formulas><v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/><o:lock v:ext="edit" aspectratio="t"/></v:shapetype><v:shape id="image5.png" o:spid="_x0000_i1034" type="#_x0000_t75" | ||
+ | style='width:4in;height:166.5pt;visibility:visible;mso-wrap-style:square'><v:imagedata src="Wiki%20Draft%20(1)_files/image001.png" o:title=""/></v:shape><![endif]--><![if !vml]><img width=384 height=222 | ||
+ | src="Wiki%20Draft%20(1)_files/image002.gif" v:shapes="image5.png"><![endif]></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:10.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | background:white;mso-highlight:white'>Figure X: The cell envelope of E. coli. | ||
+ | The cell envelope is made of the inner membrane, peptidoglycan cell wall, and | ||
+ | outer membrane. The inner membrane consists of a phospholipid (PL) bilayer. The | ||
+ | peptidoglycan cell wall can be found in the periplasmic space between the IM | ||
+ | and OM. It is made up of the </span><span lang=EN style='font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'>NAG-NAM | ||
+ | disaccharide, cross-linked by pentapeptide side chains. The peptidoglycan cell | ||
+ | wall is connected to the OM via murein or Braun’s lipoprotein, <span | ||
+ | class=SpellE>Lpp</span> (<span class=SpellE>coloured</span> dark blue). The OM | ||
+ | consists of PLs in its inner leaflet, LPS molecules in its outer leaflet, and | ||
+ | outer membrane proteins, <span class=SpellE>Omps</span> (<span class=SpellE>coloured</span> | ||
+ | green). The outer membrane may also contain <span class=SpellE><span | ||
+ | class=GramE>non essential</span></span> structures such as exopolysaccharides | ||
+ | (EPS), flagella and type I fimbria.</span><span lang=EN style='font-size:8.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman";background:white;mso-highlight:white'><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'>LPS | ||
+ | Structure<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN><a | ||
+ | href="https://www.ocl-journal.org/articles/ocl/full_html/2020/01/ocl200025s/ocl200025s.html"><span | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#1155CC;background:white; | ||
+ | mso-highlight:white'>https://www.ocl-journal.org/articles/ocl/full_html/2020/01/ocl200025s/ocl200025s.html</span></a></span><u><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#1155CC;background:white; | ||
+ | mso-highlight:white'><o:p></o:p></span></u><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm'><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | background:white;mso-highlight:white'>LPS are glycolipids comprised of three | ||
+ | primary regions. The first is the lipid A region, which is typically made up of | ||
+ | a bis-phosphorylated glucosamine disaccharide that carries fatty acids in ester | ||
+ | and amide linkages. This region is connected to the second core oligosaccharide | ||
+ | region via 2-keto-3 deoxy-<span class=SpellE>octulosonic</span> acid (<span | ||
+ | class=SpellE>Kdo</span>). The third region is the O-chain, consisting of | ||
+ | repeating oligosaccharide units and differs from one bacterium to another.<o:p></o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm'><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | background:white;mso-highlight:white'>LPS Function<o:p></o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm;text-indent:36.0pt'><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman";background:white;mso-highlight:white'>LPS provides a | ||
+ | permeability barrier that prevents the entry of harmful molecules. High density | ||
+ | of saturated fatty acids <span class=GramE>cause</span> broadly and strong | ||
+ | interaction with the acyl chain, and it synthesizes a low fluidity of the | ||
+ | membrane bilayer. In addition, divalent cations between LPS molecules stabilize | ||
+ | the high negativity of the membrane, which is caused by the presence of the | ||
+ | phosphate group. <span class=SpellE>Polyionic</span> interaction within the | ||
+ | outer membrane promotes LPS packing, and constructs LPS as a permeability | ||
+ | barrier.<o:p></o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm;text-indent:36.0pt'><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman";background:white;mso-highlight:white'>LPS also contributes to | ||
+ | impacting the virulence of the bacteria cell. LPS is more <span class=GramE>stable<span | ||
+ | style='mso-spacerun:yes'> </span>by</span> comparing with bacterial exotoxins, | ||
+ | and is the primary<o:p></o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm;text-indent:36.0pt'><span lang=EN><a | ||
+ | href="https://www.ncbi.nlm.nih.gov/books/NBK554414/#:~:text=The%20primary%20function%20of%20LPS,inhabitation%20in%20the%20gastrointestinal%20tract"><span | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#1155CC;background:white; | ||
+ | mso-highlight:white'>https://www.ncbi.nlm.nih.gov/books/NBK554414/#:~:text=The%20primary%20function%20of%20LPS,inhabitation%20in%20the%20gastrointestinal%20tract</span></a></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'>. | ||
+ | </span><!--[if supportFields]><span lang=EN style='font-size:12.0pt;line-height: | ||
+ | 115%;font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | background:white;mso-highlight:white'><span style='mso-element:field-begin'></span><span | ||
+ | style='mso-spacerun:yes'> </span>ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"zc9EP2pc","properties":{"formattedCitation":"\\super | ||
+ | 7\\nosupersub{}","plainCitation":"7","noteIndex":0},"citationItems":[{"id":646,"uris":["http://zotero.org/users/local/DWdd4k1w/items/T75BDR5A"],"itemData":{"id":646,"type":"chapter","abstract":"Lipopolysaccharides | ||
+ | (LPS) are important outer membrane components of gram-negative bacteria. They | ||
+ | are large amphipathic glycoconjugates that typically consist of a lipid domain | ||
+ | (hydrophobic) attached to a core oligosaccharide and a distal polysaccharide. | ||
+ | These molecules are also known as lipogylcans due to the presence of lipid and | ||
+ | sugar molecules. The lipopolysaccharides are composed of: 1. Lipid A: | ||
+ | the hydrophobic domain, which is an endotoxin and the main virulence factor. 2. | ||
+ | O-antigen, the repeating hydrophilic distal oligosaccharide. 3. The hydrophilic | ||
+ | core polysaccharide. The lipid A component varies from one organism to another | ||
+ | and is essential in imparting specific pathogenic attributes to the | ||
+ | bacteria. Inherent to gram-negative bacteria, LPS provides integrity to | ||
+ | the bacterial cell and a mechanism of interaction of the bacteria to other | ||
+ | surfaces. Most bacterial LPS molecules are thermostable and generate a | ||
+ | robust pro-inflammatory stimulus for the immune system in mammals. Since different | ||
+ | types of LPS are present in different genera of gram-negative bacteria, LPS is | ||
+ | used for serotyping gram-negative bacteria. More specifically, the | ||
+ | O-antigen imparts serological distinction to the bacterial species. Also, the | ||
+ | size and composition of LPS are highly dynamic among bacterial species. Due to | ||
+ | its unique properties, LPS has gained considerable research focus to understand | ||
+ | its complex structure, biogenesis, transport, and assembly. Besides, LPS is | ||
+ | also a recognized biomarker due to its central role in host-pathogen | ||
+ | interaction that facilitates the infection | ||
+ | process.","call-number":"NBK554414","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: 32119301","publisher":"StatPearls | ||
+ | Publishing","publisher-place":"Treasure Island | ||
+ | (FL)","source":"PubMed","title":"Biochemistry, | ||
+ | Lipopolysaccharide","URL":"http://www.ncbi.nlm.nih.gov/books/NBK554414/","author":[{"family":"Farhana","given":"Aisha"},{"family":"Khan","given":"Yusuf | ||
+ | S."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>7</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><span | ||
+ | style='mso-element:field-end'></span></span><![endif]--><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'> | ||
+ | (Farhana)<o:p></o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm;text-indent:36.0pt'><span lang=EN><a | ||
+ | href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091223/"><span | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#1155CC;background:white; | ||
+ | mso-highlight:white'>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091223/</span></a></span><u><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#1155CC;background:white; | ||
+ | mso-highlight:white'></span></u><!--[if supportFields]><u><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#1155CC;background:white; | ||
+ | mso-highlight:white'><span style='mso-element:field-begin'></span><span | ||
+ | style='mso-spacerun:yes'> </span>ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"NPayMhvD","properties":{"formattedCitation":"\\super | ||
+ | 5\\nosupersub{}","plainCitation":"5","noteIndex":0},"citationItems":[{"id":623,"uris":["http://zotero.org/users/local/DWdd4k1w/items/HUNH4ZWD"],"itemData":{"id":623,"type":"article-journal","abstract":"The | ||
+ | cell envelope is the first line of defense between a bacterium and the | ||
+ | world-at-large. Often, the initial steps that determine the outcome of chemical | ||
+ | warfare, bacteriophage infections, and battles with other bacteria or the | ||
+ | immune system greatly depend on the structure and composition of the bacterial | ||
+ | cell surface. One of the most studied bacterial surface molecules is the glycolipid | ||
+ | known as lipopolysaccharide (LPS), which is produced by most Gram-negative | ||
+ | bacteria. Much of the initial attention LPS received in the early 1900s was | ||
+ | owed to its ability to stimulate the immune system, for which the glycolipid | ||
+ | was commonly known as endotoxin. It was later discovered that LPS also creates | ||
+ | a permeability barrier at the cell surface and is a main contributor to the | ||
+ | innate resistance that Gram-negative bacteria display against many | ||
+ | antimicrobials. Not surprisingly, these important properties of LPS have driven | ||
+ | a vast and still prolific body of literature for more than a hundred years. LPS | ||
+ | research has also led to pioneering studies in bacterial envelope biogenesis | ||
+ | and physiology, mostly using Escherichia coli and Salmonella as model systems. | ||
+ | In this review, we will focus on the fundamental knowledge we have gained from | ||
+ | studies of the complex structure of the LPS molecule and the biochemical | ||
+ | pathways for its synthesis, as well as the transport of LPS across the | ||
+ | bacterial envelope and its assembly at the cell | ||
+ | surface.","container-title":"EcoSal | ||
+ | Plus","DOI":"10.1128/ecosalplus.ESP-0001-2018","issue":"1","note":"publisher: | ||
+ | American Society for Microbiology","source":"journals.asm.org | ||
+ | (Atypon)","title":"Function and Biogenesis of | ||
+ | Lipopolysaccharides","URL":"https://journals.asm.org/doi/10.1128/ecosalplus.ESP-0001-2018","volume":"8","author":[{"family":"Bertani","given":"Blake"},{"family":"Ruiz","given":"Natividad"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2018",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span></u><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>5</span></sup><!--[if supportFields]><u><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#1155CC;background:white; | ||
+ | mso-highlight:white'><span style='mso-element:field-end'></span></span></u><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";background:white;mso-highlight:white'><o:p></o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm;text-indent:36.0pt'><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman";background:white;mso-highlight:white'><o:p> </o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm;text-indent:36.0pt'><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman";background:white;mso-highlight:white'><o:p> </o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm'><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | background:white;mso-highlight:white'><o:p> </o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm'><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | background:white;mso-highlight:white'><o:p> </o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm'><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | background:white;mso-highlight:white'><o:p> </o:p></span><p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom: | ||
+ | 12.0pt;margin-left:0cm'><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | background:white;mso-highlight:white'><o:p> </o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.0 LPS synthesis<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>The | ||
+ | LPS biosynthesis pathway is crucial for the structural makeup of gram-negative | ||
+ | bacteria’s outer membrane</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"duQKHHWi","properties":{"formattedCitation":"\\super | ||
+ | 8\\nosupersub{}","plainCitation":"8","noteIndex":0},"citationItems":[{"id":638,"uris":["http://zotero.org/users/local/DWdd4k1w/items/ZRPN7M3N"],"itemData":{"id":638,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | that constitutes the outer leaflet of the outer membrane of most Gram-negative | ||
+ | bacteria is referred to as an endotoxin. It is comprised of a hydrophilic polysaccharide | ||
+ | and a hydrophobic component referred to as lipid A. Lipid A is responsible for | ||
+ | the major bioactivity of endotoxin, and is recognized by immune cells as a | ||
+ | pathogen-associated molecule. Most enzymes and genes coding for proteins | ||
+ | responsible for the biosynthesis and export of lipopolysaccharide in | ||
+ | Escherichia coli have been identified, and they are shared by most | ||
+ | Gram-negative bacteria based on genetic information. The detailed structure of | ||
+ | lipopolysaccharide differs from one bacterium to another, consistent with the | ||
+ | recent discovery of additional enzymes and gene products that can modify the | ||
+ | basic structure of lipopolysaccharide in some bacteria, especially pathogens. | ||
+ | These modifications are not required for survival, but are tightly regulated in | ||
+ | the cell and closely related to the virulence of bacteria. In this review we | ||
+ | discuss recent studies of the biosynthesis and export of lipopolysaccharide, | ||
+ | and the relationship between the structure of lipopolysaccharide and the | ||
+ | virulence of bacteria.","container-title":"Progress in | ||
+ | Lipid | ||
+ | Research","DOI":"10.1016/j.plipres.2009.06.002","ISSN":"0163-7827","issue":"2","journalAbbreviation":"Progress | ||
+ | in Lipid Research","language":"en","page":"97-107","source":"ScienceDirect","title":"Lipopolysaccharide: | ||
+ | Biosynthetic pathway and structure | ||
+ | modification","title-short":"Lipopolysaccharide","URL":"https://www.sciencedirect.com/science/article/pii/S0163782709000526","volume":"49","author":[{"family":"Wang","given":"Xiaoyuan"},{"family":"Quinn","given":"Peter | ||
+ | J."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",4,1]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>8</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Wang & Quinn, 2010). Reflected | ||
+ | in the structure of LPS, its synthesis is dependent on the formation of its | ||
+ | three regions: Lipid A, the core oligosaccharide, and the O-antigen. LPS | ||
+ | synthesis occurs within the cytoplasm along the inner membrane surface.<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.1 Lipid A synthesis<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>The | ||
+ | LPS biosynthesis starts with the conserved pathway of lipid A synthesis as | ||
+ | displayed in <b style='mso-bidi-font-weight:normal'>Figure X '''</span><!--[if supportFields]><b | ||
+ | style='mso-bidi-font-weight:normal'><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span><span | ||
+ | style='mso-spacerun:yes'> </span>ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"2I1GZm5a","properties":{"formattedCitation":"\\super | ||
+ | 9\\nosupersub{}","plainCitation":"9","noteIndex":0},"citationItems":[{"id":642,"uris":["http://zotero.org/users/local/DWdd4k1w/items/WA5WMMWJ"],"itemData":{"id":642,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | molecules represent a unique family of glycolipids based on a highly conserved | ||
+ | lipid moiety known as lipid A. These molecules are produced by most | ||
+ | gram-negative bacteria, in which they play important roles in the integrity of | ||
+ | the outer-membrane permeability barrier and participate extensively in | ||
+ | host?pathogen interplay. Few bacteria contain lipopolysaccharide molecules | ||
+ | composed only of lipid A. In most forms, lipid A is glycosylated by addition of | ||
+ | the core oligosaccharide that, in some bacteria, provides an attachment site | ||
+ | for a long-chain O-antigenic polysaccharide. The complexity of | ||
+ | lipopolysaccharide structures is reflected in the processes used for their | ||
+ | biosynthesis and export. Rapid growth and cell division depend on the bacterial | ||
+ | cell's capacity to synthesize and export lipopolysaccharide efficiently and in | ||
+ | large amounts. We review recent advances in those processes, emphasizing the | ||
+ | reactions that are essential for | ||
+ | viability.","container-title":"Annual Review of | ||
+ | Biochemistry","DOI":"10.1146/annurev-biochem-060713-035600","ISSN":"0066-4154","issue":"1","journalAbbreviation":"Annu. | ||
+ | Rev. Biochem.","note":"publisher: Annual | ||
+ | Reviews","page":"99-128","title":"Biosynthesis | ||
+ | and Export of Bacterial | ||
+ | Lipopolysaccharides","URL":"https://doi.org/10.1146/annurev-biochem-060713-035600","volume":"83","author":[{"family":"Whitfield","given":"Chris"},{"family":"Trent","given":"M. | ||
+ | Stephen"}],"accessed":{"date-parts":[["2023",2,2]]},"issued":{"date-parts":[["2014",6,2]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span>'''<![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>9</span></sup><!--[if supportFields]><b | ||
+ | style='mso-bidi-font-weight:normal'><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-end'></span></span>'''<![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Whitfield & Trent, 2014). This | ||
+ | pathway begins with a UDP-N-acetylglucosamine (UDP-<span class=SpellE>GlcNAc</span>) | ||
+ | molecule</span><!--[if supportFields]><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"TH4VaFYV","properties":{"formattedCitation":"\\super | ||
+ | 8\\nosupersub{}","plainCitation":"8","noteIndex":0},"citationItems":[{"id":638,"uris":["http://zotero.org/users/local/DWdd4k1w/items/ZRPN7M3N"],"itemData":{"id":638,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | that constitutes the outer leaflet of the outer membrane of most Gram-negative | ||
+ | bacteria is referred to as an endotoxin. It is comprised of a hydrophilic | ||
+ | polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is | ||
+ | responsible for the major bioactivity of endotoxin, and is recognized by immune | ||
+ | cells as a pathogen-associated molecule. Most enzymes and genes coding for | ||
+ | proteins responsible for the biosynthesis and export of lipopolysaccharide in | ||
+ | Escherichia coli have been identified, and they are shared by most | ||
+ | Gram-negative bacteria based on genetic information. The detailed structure of | ||
+ | lipopolysaccharide differs from one bacterium to another, consistent with the | ||
+ | recent discovery of additional enzymes and gene products that can modify the | ||
+ | basic structure of lipopolysaccharide in some bacteria, especially pathogens. | ||
+ | These modifications are not required for survival, but are tightly regulated in | ||
+ | the cell and closely related to the virulence of bacteria. In this review we | ||
+ | discuss recent studies of the biosynthesis and export of lipopolysaccharide, | ||
+ | and the relationship between the structure of lipopolysaccharide and the | ||
+ | virulence of bacteria.","container-title":"Progress in | ||
+ | Lipid Research","DOI":"10.1016/j.plipres.2009.06.002","ISSN":"0163-7827","issue":"2","journalAbbreviation":"Progress | ||
+ | in Lipid | ||
+ | Research","language":"en","page":"97-107","source":"ScienceDirect","title":"Lipopolysaccharide: | ||
+ | Biosynthetic pathway and structure | ||
+ | modification","title-short":"Lipopolysaccharide","URL":"https://www.sciencedirect.com/science/article/pii/S0163782709000526","volume":"49","author":[{"family":"Wang","given":"Xiaoyuan"},{"family":"Quinn","given":"Peter | ||
+ | J."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",4,1]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>8</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Wang & Quinn, 2010). Lipid A | ||
+ | synthesis involves the addition of hydrophobic fatty acid chains to UDP-<span | ||
+ | class=SpellE>GlcNAc</span> catalyzed by <span class=SpellE>LpxA</span>, <span | ||
+ | class=SpellE>LpxC</span> and <span class=SpellE>LpxD</span>, forming | ||
+ | UDP-diacyl-<span class=SpellE>GlcN</span>. <span style='color:#212121; | ||
+ | background:white;mso-highlight:white'>Although the biosynthesis begins with the | ||
+ | acylation of UDP-<span class=SpellE>GlcNAc</span>, catalyzed by <span | ||
+ | class=SpellE>LpxA</span>, this reaction is thermodynamically unfavourable</span></span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#212121;background:white; | ||
+ | mso-highlight:white'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"8vx6d2Gc","properties":{"formattedCitation":"\\super | ||
+ | 10\\nosupersub{}","plainCitation":"10","noteIndex":0},"citationItems":[{"id":632,"uris":["http://zotero.org/users/local/DWdd4k1w/items/W6EZIQHQ"],"itemData":{"id":632,"type":"article-journal","abstract":"Multi-drug | ||
+ | resistant (MDR), pathogenic Gram-negative bacteria pose a serious health | ||
+ | threat, and novel antibiotic targets must be identified to combat MDR infections. | ||
+ | One promising target is the zinc-dependent metalloamidase | ||
+ | UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC), which | ||
+ | catalyzes the committed step of lipid A (endotoxin) biosynthesis. LpxC is an | ||
+ | essential, single copy gene that is conserved in virtually all Gram-negative | ||
+ | bacteria. LpxC structures, revealed by NMR and X-ray crystallography, | ||
+ | demonstrate that LpxC adopts a novel ‘β-α-α-β sandwich’ | ||
+ | fold and encapsulates the acyl chain of the substrate with a unique hydrophobic | ||
+ | passage. Kinetic analysis revealed that LpxC functions by a general acid-base | ||
+ | mechanism, with a glutamate serving as the general base.<span | ||
+ | style='mso-spacerun:yes'> </span>Many potent LpxC inhibitors have been | ||
+ | identified, and most contain a hydroxamate group targeting the catalytic zinc | ||
+ | ion. Although early LpxC-inhibitors were either narrow-spectrum antibiotics or | ||
+ | broad-spectrum in vitro LpxC inhibitors with limited antibiotic properties, the | ||
+ | recently discovered compound CHIR-090 is a powerful antibiotic that controls | ||
+ | the growth of Escherichia coli and Pseudomonas aeruginosa, with an efficacy | ||
+ | rivaling that of the FDA-approved antibiotic ciprofloxacin. CHIR-090 inhibits a | ||
+ | wide range of LpxC enzymes with sub-nanomolar affinity in vitro, and is a | ||
+ | two-step, slow, tight-binding inhibitor of Aquifex aeolicus and E. coli LpxC. | ||
+ | The success of CHIR-090 suggests that potent LpxCtargeting antibiotics may be | ||
+ | developed to control a broad range of Gram-negative | ||
+ | bacteria.","container-title":"Current Pharmaceutical | ||
+ | Biotechnology","issue":"1","language":"en","page":"9-15","source":"www.eurekaselect.com","title":"Mechanism | ||
+ | and Inhibition of LpxC: An Essential Zinc-Dependent Deacetylase of Bacterial | ||
+ | Lipid A Synthesis","title-short":"Mechanism and Inhibition | ||
+ | of | ||
+ | LpxC","URL":"https://www.eurekaselect.com/article/11296","volume":"9","author":[{"family":"Zhou","given":"Pei"},{"family":"Barb","given":"Adam | ||
+ | W."}],"accessed":{"date-parts":[["2023",2,1]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>10</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#212121;background:white; | ||
+ | mso-highlight:white'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#212121;background:white; | ||
+ | mso-highlight:white'> (Barb & Zhou, 2008). Thus, the first committed step | ||
+ | of lipid A biosynthesis is the deacetylation reaction catalyzed by <span | ||
+ | class=SpellE>LpxC</span></span><span lang=EN style='font-size:15.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman";color:#212121;background:white;mso-highlight:white'>. </span><span | ||
+ | class=SpellE><span lang=EN style='font-size:12.0pt;line-height:115%;font-family: | ||
+ | "Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>LpxC</span></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> is a crucial enzyme as it catalyzes | ||
+ | the non-reversible step in lipid A synthesis which is the deacetylation of UDP-3-O-(acyl)-<span | ||
+ | class=SpellE>GlcNAc</span>. <span class=SpellE>LpxC</span> also has a unique | ||
+ | sequence compared to other deacetylases and plays a regulatory role in lipid A | ||
+ | biosynthesis, which makes it an attractive target for antibiotic development</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"8KyB55he","properties":{"formattedCitation":"\\super | ||
+ | 8\\nosupersub{}","plainCitation":"8","noteIndex":0},"citationItems":[{"id":638,"uris":["http://zotero.org/users/local/DWdd4k1w/items/ZRPN7M3N"],"itemData":{"id":638,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | that constitutes the outer leaflet of the outer membrane of most Gram-negative | ||
+ | bacteria is referred to as an endotoxin. It is comprised of a hydrophilic | ||
+ | polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is | ||
+ | responsible for the major bioactivity of endotoxin, and is recognized by immune | ||
+ | cells as a pathogen-associated molecule. Most enzymes and genes coding for | ||
+ | proteins responsible for the biosynthesis and export of lipopolysaccharide in | ||
+ | Escherichia coli have been identified, and they are shared by most | ||
+ | Gram-negative bacteria based on genetic information. The detailed structure of | ||
+ | lipopolysaccharide differs from one bacterium to another, consistent with the | ||
+ | recent discovery of additional enzymes and gene products that can modify the | ||
+ | basic structure of lipopolysaccharide in some bacteria, especially pathogens. | ||
+ | These modifications are not required for survival, but are tightly regulated in | ||
+ | the cell and closely related to the virulence of bacteria. In this review we | ||
+ | discuss recent studies of the biosynthesis and export of lipopolysaccharide, | ||
+ | and the relationship between the structure of lipopolysaccharide and the | ||
+ | virulence of bacteria.","container-title":"Progress in | ||
+ | Lipid Research","DOI":"10.1016/j.plipres.2009.06.002","ISSN":"0163-7827","issue":"2","journalAbbreviation":"Progress | ||
+ | in Lipid | ||
+ | Research","language":"en","page":"97-107","source":"ScienceDirect","title":"Lipopolysaccharide: | ||
+ | Biosynthetic pathway and structure | ||
+ | modification","title-short":"Lipopolysaccharide","URL":"https://www.sciencedirect.com/science/article/pii/S0163782709000526","volume":"49","author":[{"family":"Wang","given":"Xiaoyuan"},{"family":"Quinn","given":"Peter | ||
+ | J."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",4,1]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>8</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Wang & Quinn, 2010). Following | ||
+ | <span class=SpellE>LpxD</span> action, UDP-diacyl-<span class=SpellE>GlcN</span> | ||
+ | undergoes a series of reactions catalyzed by three other enzymes, <span | ||
+ | class=SpellE>LpxH</span>, <span class=SpellE>LpxB</span> and <span | ||
+ | class=SpellE>LpxK</span>, to compose lipid IV<sub>A</sub>.<span | ||
+ | style='mso-spacerun:yes'> </span>Two <span class=SpellE>Kdo</span> molecules | ||
+ | are added to Lipid IV<sub>A</sub>, catalyzed by the bifunctional <span | ||
+ | class=SpellE>KdtA</span>. Kdo<sub>2</sub>-LipidIV<sub>A</sub> is further | ||
+ | modified with acyltransferases, <span class=SpellE>LpxL</span> and <span | ||
+ | class=SpellE>LpxM</span>, to form Kdo<sub>2</sub>-Lipid A.<span | ||
+ | style='mso-spacerun:yes'> </span>Kdo<sub>2</sub>-Lipid A is the active form | ||
+ | that is used for the addition of core oligosaccharides and overall assembly of | ||
+ | LPS.<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.2 Core Oligosaccharides | ||
+ | synthesis/addition<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>The | ||
+ | core oligosaccharides are added to lipid A on the cytoplasmic surface of the | ||
+ | inner membrane through membrane-bound glycosyltransferases and nucleotide sugar | ||
+ | donors</span><!--[if supportFields]><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"Hvjl9LDm","properties":{"formattedCitation":"\\super | ||
+ | 8\\nosupersub{}","plainCitation":"8","noteIndex":0},"citationItems":[{"id":638,"uris":["http://zotero.org/users/local/DWdd4k1w/items/ZRPN7M3N"],"itemData":{"id":638,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | that constitutes the outer leaflet of the outer membrane of most Gram-negative | ||
+ | bacteria is referred to as an endotoxin. It is comprised of a hydrophilic | ||
+ | polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is | ||
+ | responsible for the major bioactivity of endotoxin, and is recognized by immune | ||
+ | cells as a pathogen-associated molecule. Most enzymes and genes coding for | ||
+ | proteins responsible for the biosynthesis and export of lipopolysaccharide in | ||
+ | Escherichia coli have been identified, and they are shared by most Gram-negative | ||
+ | bacteria based on genetic information. The detailed structure of | ||
+ | lipopolysaccharide differs from one bacterium to another, consistent with the | ||
+ | recent discovery of additional enzymes and gene products that can modify the | ||
+ | basic structure of lipopolysaccharide in some bacteria, especially pathogens. | ||
+ | These modifications are not required for survival, but are tightly regulated in | ||
+ | the cell and closely related to the virulence of bacteria. In this review we | ||
+ | discuss recent studies of the biosynthesis and export of lipopolysaccharide, | ||
+ | and the relationship between the structure of lipopolysaccharide and the | ||
+ | virulence of bacteria.","container-title":"Progress in | ||
+ | Lipid Research","DOI":"10.1016/j.plipres.2009.06.002","ISSN":"0163-7827","issue":"2","journalAbbreviation":"Progress | ||
+ | in Lipid | ||
+ | Research","language":"en","page":"97-107","source":"ScienceDirect","title":"Lipopolysaccharide: | ||
+ | Biosynthetic pathway and structure modification","title-short":"Lipopolysaccharide","URL":"https://www.sciencedirect.com/science/article/pii/S0163782709000526","volume":"49","author":[{"family":"Wang","given":"Xiaoyuan"},{"family":"Quinn","given":"Peter | ||
+ | J."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",4,1]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>8</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Wang & Quinn, 2010). The core | ||
+ | oligosaccharides have two components: the inner core and the outer core. The | ||
+ | inner core is the conserved region of the core oligosaccharides and includes <span | ||
+ | class=SpellE>Kdo</span> molecules as well as the L-<span class=SpellE>glycero</span>-D-<span | ||
+ | class=SpellE>manno</span>-heptose molecule (Hep)</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"9jd2Utu1","properties":{"formattedCitation":"\\super | ||
+ | 9\\nosupersub{}","plainCitation":"9","noteIndex":0},"citationItems":[{"id":642,"uris":["http://zotero.org/users/local/DWdd4k1w/items/WA5WMMWJ"],"itemData":{"id":642,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | molecules represent a unique family of glycolipids based on a highly conserved | ||
+ | lipid moiety known as lipid A. These molecules are produced by most | ||
+ | gram-negative bacteria, in which they play important roles in the integrity of | ||
+ | the outer-membrane permeability barrier and participate extensively in | ||
+ | host?pathogen interplay. Few bacteria contain lipopolysaccharide molecules | ||
+ | composed only of lipid A. In most forms, lipid A is glycosylated by addition of | ||
+ | the core oligosaccharide that, in some bacteria, provides an attachment site | ||
+ | for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide | ||
+ | structures is reflected in the processes used for their biosynthesis and | ||
+ | export. Rapid growth and cell division depend on the bacterial cell's capacity | ||
+ | to synthesize and export lipopolysaccharide efficiently and in large amounts. | ||
+ | We review recent advances in those processes, emphasizing the reactions that | ||
+ | are essential for viability.","container-title":"Annual | ||
+ | Review of | ||
+ | Biochemistry","DOI":"10.1146/annurev-biochem-060713-035600","ISSN":"0066-4154","issue":"1","journalAbbreviation":"Annu. | ||
+ | Rev. Biochem.","note":"publisher: Annual | ||
+ | Reviews","page":"99-128","title":"Biosynthesis | ||
+ | and Export of Bacterial | ||
+ | Lipopolysaccharides","URL":"https://doi.org/10.1146/annurev-biochem-060713-035600","volume":"83","author":[{"family":"Whitfield","given":"Chris"},{"family":"Trent","given":"M. | ||
+ | Stephen"}],"accessed":{"date-parts":[["2023",2,2]]},"issued":{"date-parts":[["2014",6,2]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>9</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Whitfield & Trent, 2014). The | ||
+ | formation and attachment of Hep are mediated by enzymes synthesized by the <span | ||
+ | class=SpellE><i style='mso-bidi-font-style:normal'>gmhD''</span><i | ||
+ | style='mso-bidi-font-style:normal'>''operon. On the other hand, the outer | ||
+ | core region is less conserved. The outer core oligosaccharides are synthesized | ||
+ | by gene products of the <span class=SpellE>waaQ</span> operons.<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.3 O-antigen addition<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>The | ||
+ | O-antigen polymers are added to the outer core oligosaccharides through | ||
+ | glycosyltransferases and nucleotide sugar donors</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"TLflZagS","properties":{"formattedCitation":"\\super | ||
+ | 8\\nosupersub{}","plainCitation":"8","noteIndex":0},"citationItems":[{"id":638,"uris":["http://zotero.org/users/local/DWdd4k1w/items/ZRPN7M3N"],"itemData":{"id":638,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | that constitutes the outer leaflet of the outer membrane of most Gram-negative | ||
+ | bacteria is referred to as an endotoxin. It is comprised of a hydrophilic | ||
+ | polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is | ||
+ | responsible for the major bioactivity of endotoxin, and is recognized by immune | ||
+ | cells as a pathogen-associated molecule. Most enzymes and genes coding for | ||
+ | proteins responsible for the biosynthesis and export of lipopolysaccharide in | ||
+ | Escherichia coli have been identified, and they are shared by most | ||
+ | Gram-negative bacteria based on genetic information. The detailed structure of | ||
+ | lipopolysaccharide differs from one bacterium to another, consistent with the | ||
+ | recent discovery of additional enzymes and gene products that can modify the | ||
+ | basic structure of lipopolysaccharide in some bacteria, especially pathogens. | ||
+ | These modifications are not required for survival, but are tightly regulated in | ||
+ | the cell and closely related to the virulence of bacteria. In this review we | ||
+ | discuss recent studies of the biosynthesis and export of lipopolysaccharide, | ||
+ | and the relationship between the structure of lipopolysaccharide and the | ||
+ | virulence of bacteria.","container-title":"Progress in Lipid | ||
+ | Research","DOI":"10.1016/j.plipres.2009.06.002","ISSN":"0163-7827","issue":"2","journalAbbreviation":"Progress | ||
+ | in Lipid Research","language":"en","page":"97-107","source":"ScienceDirect","title":"Lipopolysaccharide: | ||
+ | Biosynthetic pathway and structure modification","title-short":"Lipopolysaccharide","URL":"https://www.sciencedirect.com/science/article/pii/S0163782709000526","volume":"49","author":[{"family":"Wang","given":"Xiaoyuan"},{"family":"Quinn","given":"Peter | ||
+ | J."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2010",4,1]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>8</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Wang & Quinn, 2010). The <span | ||
+ | class=SpellE><i style='mso-bidi-font-style:normal'>rfb''</span> gene cluster | ||
+ | enzyme derivatives contribute to O-antigen diversity through the creation of | ||
+ | enzymes for varying sugar-nucleotide precursors. The <span class=SpellE><i | ||
+ | style='mso-bidi-font-style:normal'>rfb''</span> operon also synthesizes | ||
+ | glycosyltransferases, polymerases, and proteins needed for O-antigen transport | ||
+ | through the inner membrane.<o:p></o:p></span><p class=MsoNormal style='margin-bottom:12.0pt'><span lang=EN style='font-size: | ||
+ | 12.0pt;line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-spacerun:yes'> </span><span | ||
+ | style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape id="image1.png" o:spid="_x0000_i1033" | ||
+ | type="#_x0000_t75" style='width:468pt;height:328pt;visibility:visible; | ||
+ | mso-wrap-style:square'><v:imagedata src="Wiki%20Draft%20(1)_files/image003.png" o:title=""/></v:shape><![endif]--><![if !vml]><img border=0 width=624 height=437 | ||
+ | src="Wiki%20Draft%20(1)_files/image004.gif" v:shapes="image1.png"><![endif]></span><o:p></o:p></span><p class=MsoNormal style='margin-bottom:12.0pt'><b style='mso-bidi-font-weight: | ||
+ | normal'><span lang=EN style='font-size:12.0pt;line-height:115%;font-family: | ||
+ | "Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Figure X</span>'''<span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>: Kdo2-Lipid A synthesis, the first | ||
+ | part of LPS synthesis. Kdo2-Lipid A synthesis involves the first committed step | ||
+ | in LPS synthesis, catalyzed by <span class=SpellE>LpxC</span>, which is the | ||
+ | deacetylation of UDP-3-O-(acyl)-<span class=SpellE>GlcNAc</span> (red box)</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"IUPlTF6N","properties":{"formattedCitation":"\\super | ||
+ | 11\\nosupersub{}","plainCitation":"11","noteIndex":0},"citationItems":[{"id":636,"uris":["http://zotero.org/users/local/DWdd4k1w/items/KN5AUCNU"],"itemData":{"id":636,"type":"article-journal","abstract":"UDP-N-acetylglucosamine | ||
+ | (UDP-GlcNAc) acyltransferase (LpxA) catalyzes the first step of lipid A | ||
+ | biosynthesis, the reversible transfer of the R-3-hydroxyacyl chain from | ||
+ | R-3-hydroxyacyl acyl carrier protein to the glucosamine 3-OH group of | ||
+ | UDP-GlcNAc. Escherichia coli LpxA is highly selective for R-3-hydroxymyristate. | ||
+ | The crystal structure of the E. coli LpxA homotrimer, determined previously in | ||
+ | the absence of lipid substrates or products, revealed that LpxA contains an | ||
+ | unusual, left-handed parallel β-helix fold. We have now solved the crystal | ||
+ | structures of E. coli LpxA with the bound product | ||
+ | UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc at a resolution of 1.74 Å and with bound | ||
+ | UDP-3-O-(R-3-hydroxydecanoyl)-GlcNAc at 1.85 Å. The structures of these | ||
+ | complexes are consistent with the catalytic mechanism deduced by mutagenesis | ||
+ | and with a recent 3.0-Å structure of LpxA with bound UDP-GlcNAc. Our structures | ||
+ | show how LpxA selects for 14-carbon R-3-hydroxyacyl chains and reveal two modes | ||
+ | of UDP binding.","container-title":"Proceedings of the | ||
+ | National Academy of | ||
+ | Sciences","DOI":"10.1073/pnas.0705833104","issue":"34","note":"publisher: | ||
+ | Proceedings of the National Academy of | ||
+ | Sciences","page":"13543-13550","source":"pnas.org | ||
+ | (Atypon)","title":"Structural basis for the acyl chain | ||
+ | selectivity and mechanism of UDP-N-acetylglucosamine | ||
+ | acyltransferase","URL":"https://www.pnas.org/doi/full/10.1073/pnas.0705833104","volume":"104","author":[{"family":"Williams","given":"Allison | ||
+ | H."},{"family":"Raetz","given":"Christian | ||
+ | R. H."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2007",8,21]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>11</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Williams & <span class=SpellE>Raetz</span>, | ||
+ | 2007). <o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN>LPS | ||
+ | transport <o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><span lang=EN>LPS transport begins with the movement of LPS | ||
+ | from the inner membrane to the outer membrane and involves <span class=SpellE>MsbA</span> | ||
+ | translocation (<span class=SpellE>Sperandeo</span> et al., 2017). <span | ||
+ | class=SpellE>MsbA</span><span class=SpellE>flippase</span> catalyzes the | ||
+ | flipping of the Lipid A core moiety across the inner membrane. Following | ||
+ | complete synthesis, the movement of the mature LPS molecule to the cell surface | ||
+ | is assisted by the LPT molecular machine. Broadly, the transport of LPS from | ||
+ | the inner membrane to the outer membrane can be divided into three key steps: | ||
+ | LPS detachment from the inner membrane, LPS transport across the periplasm, and | ||
+ | LPS insertion and assembly in the outer membrane at the cell surface (<span | ||
+ | class=SpellE>Sperandeo</span> et al., 2017). </span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN>Regulation | ||
+ | <o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>LPS | ||
+ | assembly begins on the internal surface of the <span class=GramE><i | ||
+ | style='mso-bidi-font-style:normal'>E.coli''</span> membrane. The rate of LPS | ||
+ | assembly is controlled by <span class=SpellE>LpxC</span>. Prior to the | ||
+ | completion of LPS biosynthesis, the lipid undergoes further modifications when | ||
+ | it is flipped to the external surface of the inner membrane. Following | ||
+ | synthesis completion, LPS is transported to the outer membrane’s external | ||
+ | surface via a protein bridge that connects both the inner and outer membranes</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"vnUtrtYB","properties":{"formattedCitation":"\\super | ||
+ | 2\\nosupersub{}","plainCitation":"2","noteIndex":0},"citationItems":[{"id":617,"uris":["http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M"],"itemData":{"id":617,"type":"article-journal","abstract":"PbgA | ||
+ | proteins controls lipopolysaccharide synthesis in Escherichia | ||
+ | coli.","container-title":"Nature","DOI":"10.1038/d41586-020-02256-x","issue":"7821","language":"en","license":"2021 | ||
+ | Nature","note":"Bandiera_abtest: a\nCg_type: News And | ||
+ | Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term: | ||
+ | Structural biology, | ||
+ | Microbiology","page":"348-349","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of a lipopolysaccharide regulator reveals a road to new | ||
+ | antibiotics","URL":"http://www.nature.com/articles/d41586-020-02256-x","volume":"584","author":[{"family":"Bishop","given":"Russell | ||
+ | E."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>2</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Bishop, 2020). </span><span | ||
+ | lang=EN style='background:white;mso-highlight:white'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Feedback | ||
+ | inhibition is a key cellular control mechanism where the activity of a key | ||
+ | enzyme within a pathway is inhibited by that same enzyme's <span class=GramE>end | ||
+ | product</span>(s). This control mechanism is essential in controlling and | ||
+ | regulating LPS biosynthesis. It is currently unknown but it has been suspected | ||
+ | that LPS or a precursor of LPS is the feedback signal responsible for LPS | ||
+ | regulation</span><!--[if supportFields]><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION {"citationID":"EPagjeP8","properties":{"formattedCitation":"\\super | ||
+ | 2\\nosupersub{}","plainCitation":"2","noteIndex":0},"citationItems":[{"id":617,"uris":["http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M"],"itemData":{"id":617,"type":"article-journal","abstract":"PbgA | ||
+ | proteins controls lipopolysaccharide synthesis in Escherichia | ||
+ | coli.","container-title":"Nature","DOI":"10.1038/d41586-020-02256-x","issue":"7821","language":"en","license":"2021 | ||
+ | Nature","note":"Bandiera_abtest: a\nCg_type: News And | ||
+ | Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term: | ||
+ | Structural biology, | ||
+ | Microbiology","page":"348-349","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of a lipopolysaccharide regulator reveals a road to new | ||
+ | antibiotics","URL":"http://www.nature.com/articles/d41586-020-02256-x","volume":"584","author":[{"family":"Bishop","given":"Russell | ||
+ | E."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>2</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Bishop, 2020).<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | mso-no-proof:yes'><!--[if gte vml 1]><v:shape id="image4.png" o:spid="_x0000_i1032" | ||
+ | type="#_x0000_t75" style='width:467.5pt;height:200.5pt;visibility:visible; | ||
+ | mso-wrap-style:square'><v:imagedata src="Wiki%20Draft%20(1)_files/image005.png" o:title=""/></v:shape><![endif]--><![if !vml]><img border=0 width=623 height=267 | ||
+ | src="Wiki%20Draft%20(1)_files/image006.gif" v:shapes="image4.png"><![endif]></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span>There are 3 scenarios involving LPS | ||
+ | biosynthesis that will be discussed:<span style='mso-spacerun:yes'> | ||
+ | </span>typical LPS biosynthesis, LPS excess, and LPS deficiency. <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Beginning | ||
+ | with normal LPS synthesis that takes place within the cell cytoplasm, the | ||
+ | enzyme <span class=SpellE>LpxC</span> controls the biosynthesis of LPS while | ||
+ | utilizing precursors located in the <span class=GramE>cytoplasm .</span> | ||
+ | Following biosynthesis, the immature LPS is flipped onto the external surface | ||
+ | of the inner membrane and is then transported to the outer membrane. The <span | ||
+ | class=SpellE>FtsH</span> enzyme, guided by interactions with <span | ||
+ | class=SpellE>LapB</span>, degrades <span class=SpellE>LpxC</span> which | ||
+ | disrupts LPS biosynthesis</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"OZBbxks7","properties":{"formattedCitation":"\\super | ||
+ | 2\\nosupersub{}","plainCitation":"2","noteIndex":0},"citationItems":[{"id":617,"uris":["http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M"],"itemData":{"id":617,"type":"article-journal","abstract":"PbgA | ||
+ | proteins controls lipopolysaccharide synthesis in Escherichia | ||
+ | coli.","container-title":"Nature","DOI":"10.1038/d41586-020-02256-x","issue":"7821","language":"en","license":"2021 | ||
+ | Nature","note":"Bandiera_abtest: a\nCg_type: News And | ||
+ | Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term: | ||
+ | Structural biology, | ||
+ | Microbiology","page":"348-349","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of a lipopolysaccharide regulator reveals a road to new | ||
+ | antibiotics","URL":"http://www.nature.com/articles/d41586-020-02256-x","volume":"584","author":[{"family":"Bishop","given":"Russell | ||
+ | E."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>2</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Bishop, 2020). However, <span | ||
+ | class=SpellE>Clairefeuille</span> and colleagues show that a protein, <span | ||
+ | class=SpellE>PbgA</span>, inhibits <span class=SpellE>LapB-FtsH</span> activity | ||
+ | to promote LPS biosynthesis (2020). <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | mso-no-proof:yes'><!--[if gte vml 1]><v:shape id="image8.png" o:spid="_x0000_i1031" | ||
+ | type="#_x0000_t75" style='width:465.5pt;height:326.5pt;visibility:visible; | ||
+ | mso-wrap-style:square'><v:imagedata src="Wiki%20Draft%20(1)_files/image007.png" o:title=""/></v:shape><![endif]--><![if !vml]><img border=0 width=621 height=435 | ||
+ | src="Wiki%20Draft%20(1)_files/image008.gif" v:shapes="image8.png"><![endif]></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Figure | ||
+ | _. LPS synthesis and degradation of <span class=SpellE>LpxC</span>. The enzyme <span | ||
+ | class=SpellE>LpxC</span> controls the biosynthesis of LPS, utilizing precursors | ||
+ | located within the <span class=GramE><i style='mso-bidi-font-style:normal'>E.coli''</span><i | ||
+ | style='mso-bidi-font-style:normal'>''cell cytoplasm. After being flipped to | ||
+ | the external surface of the inner membrane through an ABC transporter, the | ||
+ | mature LPS is transported to the outer membrane using LPT machinery. The enzyme | ||
+ | <span class=SpellE>FtsH</span>, aided by interactions with the protein <span | ||
+ | class=SpellE>LapB</span>, degrades <span class=SpellE>LpxC</span>. <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | mso-no-proof:yes'><!--[if gte vml 1]><v:shape id="image10.png" o:spid="_x0000_i1030" | ||
+ | type="#_x0000_t75" style='width:467.5pt;height:336pt;visibility:visible; | ||
+ | mso-wrap-style:square'><v:imagedata src="Wiki%20Draft%20(1)_files/image009.png" o:title="" | ||
+ | cropright="494f"/></v:shape><![endif]--><![if !vml]><img border=0 width=623 height=448 | ||
+ | src="Wiki%20Draft%20(1)_files/image010.gif" v:shapes="image10.png"><![endif]></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Figure | ||
+ | _. Inhibition of <span class=SpellE>FtsH-LapB</span> activity. <span | ||
+ | class=SpellE>PbgA</span> is a protein that inhibits the actions of <span | ||
+ | class=SpellE>FtsH-LapB</span> to promote LPS biosynthesis. <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Next, | ||
+ | when LPS is being synthesized in excessive amounts, it will accumulate on the | ||
+ | external surface of the inner membrane and bind to PbgA</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"8hpU9wVs","properties":{"formattedCitation":"\\super | ||
+ | 2\\nosupersub{}","plainCitation":"2","noteIndex":0},"citationItems":[{"id":617,"uris":["http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M"],"itemData":{"id":617,"type":"article-journal","abstract":"PbgA | ||
+ | proteins controls lipopolysaccharide synthesis in Escherichia | ||
+ | coli.","container-title":"Nature","DOI":"10.1038/d41586-020-02256-x","issue":"7821","language":"en","license":"2021 | ||
+ | Nature","note":"Bandiera_abtest: a\nCg_type: News And | ||
+ | Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term: | ||
+ | Structural biology, Microbiology","page":"348-349","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of a lipopolysaccharide regulator reveals a road to new | ||
+ | antibiotics","URL":"http://www.nature.com/articles/d41586-020-02256-x","volume":"584","author":[{"family":"Bishop","given":"Russell | ||
+ | E."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>2</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Bishop, 2020). Thereby, <span | ||
+ | class=SpellE>PbgA</span> will lessen its control on the <span class=SpellE>LapB-FtsH</span> | ||
+ | complex activity, allowing for the degradation of <span class=SpellE>LpxC</span> | ||
+ | to restore normal LPS levels.<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | mso-no-proof:yes'><!--[if gte vml 1]><v:shape id="image9.png" o:spid="_x0000_i1029" | ||
+ | type="#_x0000_t75" style='width:468pt;height:319.5pt;visibility:visible; | ||
+ | mso-wrap-style:square'><v:imagedata src="Wiki%20Draft%20(1)_files/image011.png" o:title=""/></v:shape><![endif]--><![if !vml]><img border=0 width=624 height=426 | ||
+ | src="Wiki%20Draft%20(1)_files/image012.gif" v:shapes="image9.png"><![endif]></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Figure | ||
+ | _. LPS excess. When LPS is being synthesized in excess, it will begin to | ||
+ | accumulate on the external surface of the inner membrane and bind to <span | ||
+ | class=SpellE>PbgA</span>. Bound to LPS, the protein will relax its inhibitory | ||
+ | control on <span class=SpellE>FtsH-LapB</span> to promote <span class=SpellE>LpxC</span> | ||
+ | degradation and therefore, restores normal LPS levels. <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>There | ||
+ | is a truncation mutation of <span class=SpellE>PbgA</span> that leads to the | ||
+ | depletion of LPS. This is most likely because the mutant fails to strongly | ||
+ | inhibit the <span class=SpellE>LapB-FtsH</span> interaction that degrades <span | ||
+ | class=SpellE>LpxC</span> and thereby, promotes <span class=SpellE>LpxC</span> | ||
+ | degradation</span><!--[if supportFields]><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"KLS9MM71","properties":{"formattedCitation":"\\super | ||
+ | 2\\nosupersub{}","plainCitation":"2","noteIndex":0},"citationItems":[{"id":617,"uris":["http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M"],"itemData":{"id":617,"type":"article-journal","abstract":"PbgA | ||
+ | proteins controls lipopolysaccharide synthesis in Escherichia | ||
+ | coli.","container-title":"Nature","DOI":"10.1038/d41586-020-02256-x","issue":"7821","language":"en","license":"2021 | ||
+ | Nature","note":"Bandiera_abtest: a\nCg_type: News And | ||
+ | Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term: | ||
+ | Structural biology, | ||
+ | Microbiology","page":"348-349","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of a lipopolysaccharide regulator reveals a road to new | ||
+ | antibiotics","URL":"http://www.nature.com/articles/d41586-020-02256-x","volume":"584","author":[{"family":"Bishop","given":"Russell | ||
+ | E."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>2</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Bishop, 2020). PLs then fill in | ||
+ | the gaps that are left by the LPS in the outer membrane, enabling greasy | ||
+ | antibiotics and detergents to penetrate local PL bilayers, and large soluble | ||
+ | compounds to leak through transient boundary defects where LPS and the PL | ||
+ | phases meet</span><!--[if supportFields]><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"xpZv7lIL","properties":{"formattedCitation":"\\super | ||
+ | 2\\nosupersub{}","plainCitation":"2","noteIndex":0},"citationItems":[{"id":617,"uris":["http://zotero.org/users/local/DWdd4k1w/items/FDC6F69M"],"itemData":{"id":617,"type":"article-journal","abstract":"PbgA | ||
+ | proteins controls lipopolysaccharide synthesis in Escherichia coli.","container-title":"Nature","DOI":"10.1038/d41586-020-02256-x","issue":"7821","language":"en","license":"2021 | ||
+ | Nature","note":"Bandiera_abtest: a\nCg_type: News And | ||
+ | Views\nnumber: 7821\npublisher: Nature Publishing Group\nSubject_term: | ||
+ | Structural biology, Microbiology","page":"348-349","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of a lipopolysaccharide regulator reveals a road to new | ||
+ | antibiotics","URL":"http://www.nature.com/articles/d41586-020-02256-x","volume":"584","author":[{"family":"Bishop","given":"Russell | ||
+ | E."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>2</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Bishop, 2020).<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | mso-no-proof:yes'><!--[if gte vml 1]><v:shape id="image7.png" o:spid="_x0000_i1028" | ||
+ | type="#_x0000_t75" style='width:455.5pt;height:319.5pt;visibility:visible; | ||
+ | mso-wrap-style:square'><v:imagedata src="Wiki%20Draft%20(1)_files/image013.png" o:title=""/></v:shape><![endif]--><![if !vml]><img border=0 width=607 height=426 | ||
+ | src="Wiki%20Draft%20(1)_files/image014.gif" v:shapes="image7.png"><![endif]></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span><p class=MsoNormal style='margin-bottom:12.0pt'><span lang=EN style='font-size: | ||
+ | 12.0pt;line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-spacerun:yes'> </span>Figure_. <span | ||
+ | class=SpellE>PbgA</span> truncation mutation leads to LPS depletion. A | ||
+ | depletion of LPS occurs when there is a <span class=SpellE>PbgA</span> | ||
+ | truncation mutation, most likely due to the mutant failing to inhibit <span | ||
+ | class=SpellE>FtsH-LapB</span> strongly enough. Therefore, PLs will attempt to | ||
+ | fill in the gaps left by the depletion of LPS in the outer membrane. This | ||
+ | enables greasy antibiotics and detergents to penetrate as well as large soluble | ||
+ | compounds to leak through. <o:p></o:p></span><p class=MsoNormal><span lang=EN><a | ||
+ | href="https://journals.asm.org/doi/10.1128/ecosalplus.ESP-0001-2018"><span | ||
+ | style='font-size:13.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#1155CC'>https://journals.asm.org/doi/10.1128/ecosalplus.ESP-0001-2018</span></a></span><u><span | ||
+ | lang=EN style='font-size:13.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman";color:#1155CC'><o:p></o:p></span></u><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X: <span class=SpellE>PbgA</span><o:p></o:p></span>'''<p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.1 <span class=SpellE>PbgA</span> | ||
+ | Structure <o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><span class=SpellE><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'>PbgA</span></span><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'>, also known as <span class=SpellE>YejM</span>, is an | ||
+ | essential protein in <i style='mso-bidi-font-style:normal'>E. coli'' that is | ||
+ | required for regulating LPS synthesis and maintaining membrane homeostasis</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"UlToei0B","properties":{"formattedCitation":"\\super | ||
+ | 12\\nosupersub{}","plainCitation":"12","noteIndex":0},"citationItems":[{"id":628,"uris":["http://zotero.org/users/local/DWdd4k1w/items/K232PHWH"],"itemData":{"id":628,"type":"article-journal","abstract":"Gram-negative | ||
+ | bacteria produce an asymmetric outer membrane (OM) that is particularly | ||
+ | impermeant to many antibiotics and characterized by lipopolysaccharide (LPS) | ||
+ | exclusively at the cell surface. LPS biogenesis remains an ideal target for | ||
+ | therapeutic intervention, as disruption could kill bacteria or increase | ||
+ | sensitivity to existing antibiotics. While it has been known that LPS synthesis | ||
+ | is regulated by proteolytic control of LpxC, the enzyme that catalyzes the | ||
+ | first committed step of LPS synthesis, it remains unknown which signals direct | ||
+ | this regulation. New details have been revealed during study of a cryptic | ||
+ | essential inner membrane protein, YejM. Multiple functions have been proposed | ||
+ | over the years for YejM, including a controversial hypothesis that it | ||
+ | transports cardiolipin from the inner membrane to the OM. Strong evidence now | ||
+ | indicates that YejM senses LPS in the periplasm and directs proteolytic | ||
+ | regulation. Here, we discuss the standing literature of YejM and highlight | ||
+ | exciting new insights into cell envelope | ||
+ | maintenance.","container-title":"mBio","DOI":"10.1128/mBio.02624-20","issue":"6","note":"publisher: | ||
+ | American Society for | ||
+ | Microbiology","page":"e02624-20","source":"journals.asm.org | ||
+ | (Atypon)","title":"Restoring Balance to the Outer Membrane: | ||
+ | YejM’s Role in LPS Regulation","title-short":"Restoring | ||
+ | Balance to the Outer | ||
+ | Membrane","URL":"https://journals.asm.org/doi/10.1128/mBio.02624-20","volume":"11","author":[{"family":"Simpson","given":"Brent | ||
+ | W."},{"family":"Douglass","given":"Martin | ||
+ | V."},{"family":"Trent","given":"M. | ||
+ | Stephen"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",12,15]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>12</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Simpson et al., 2020). <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>As | ||
+ | shown in Figure X, <span class=SpellE>PbgA</span> is an inner membrane protein | ||
+ | with a five-transmembrane-domain N terminus (residues 1-190) that is essential | ||
+ | for growth and a nonessential C-terminal periplasmic domain (residues 191-586). | ||
+ | Nonsense mutations that cause truncations in the periplasmic domain in <span | ||
+ | class=SpellE>PbgA</span> cause phenotypes consistent with defects in outer membrane | ||
+ | assembly, including reduced LPS/PL ratio, vancomycin sensitivity, temperature | ||
+ | sensitivity, and leakage of periplasmic proteins</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"KISnKvoZ","properties":{"formattedCitation":"\\super | ||
+ | 3\\nosupersub{}","plainCitation":"3","noteIndex":0},"citationItems":[{"id":619,"uris":["http://zotero.org/users/local/DWdd4k1w/items/HWCQ9FUI"],"itemData":{"id":619,"type":"article-journal","abstract":"Gram-negative | ||
+ | bacteria are surrounded by a complex cell envelope that includes two membranes. | ||
+ | The outer membrane prevents many drugs from entering these cells and is thus a | ||
+ | major determinant of their intrinsic antibiotic resistance. This barrier | ||
+ | function is imparted by the asymmetric architecture of the membrane with | ||
+ | lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. | ||
+ | The LPS and phospholipid synthesis pathways share an intermediate. Proper | ||
+ | membrane biogenesis therefore requires that the flux through each pathway be | ||
+ | balanced. In Escherichia coli, a major control point in establishing this | ||
+ | balance is the committed step of LPS synthesis mediated by LpxC. Levels of this | ||
+ | enzyme are controlled through its degradation by the inner membrane protease | ||
+ | FtsH and its presumed adapter protein LapB (YciM). How turnover of LpxC is | ||
+ | controlled has remained unclear for many years. Here, we demonstrate that the | ||
+ | essential protein of unknown function YejM (PbgA) participates in this | ||
+ | regulatory pathway. Suppressors of YejM essentiality were identified in lpxC | ||
+ | and lapB, and LpxC overproduction was shown to be sufficient to allow survival | ||
+ | of ΔyejM mutants. Furthermore, the stability of LpxC was shown to be | ||
+ | reduced in cells lacking YejM, and genetic and physical interactions between | ||
+ | LapB and YejM were detected. Taken together, our results are consistent with a | ||
+ | model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate | ||
+ | LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane | ||
+ | is a major determinant of the intrinsic antibiotic resistance of Gram-negative | ||
+ | bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid, and | ||
+ | the synthesis of these lipid species must be balanced for the membrane to | ||
+ | maintain its barrier function in blocking drug entry. In this study, we | ||
+ | identified an essential protein of unknown function as a key new factor in modulating | ||
+ | LPS synthesis in the model bacterium Escherichia coli. Our results provide | ||
+ | novel insight into how this organism and most likely other Gram-negative | ||
+ | bacteria maintain membrane homeostasis and their intrinsic resistance to | ||
+ | antibiotics.","container-title":"mBio","DOI":"10.1128/mBio.00939-20","issue":"3","note":"publisher: | ||
+ | American Society for | ||
+ | Microbiology","page":"e00939-20","source":"journals.asm.org | ||
+ | (Atypon)","title":"An Essential Membrane Protein Modulates | ||
+ | the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia | ||
+ | coli","URL":"https://journals.asm.org/doi/10.1128/mBio.00939-20","volume":"11","author":[{"family":"Fivenson","given":"Elayne | ||
+ | M."},{"family":"Bernhardt","given":"Thomas | ||
+ | G."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",5,19]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>3</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Fivenson</span> | ||
+ | & Bernhardt, 2020). <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | mso-no-proof:yes'><!--[if gte vml 1]><v:shape id="image6.png" o:spid="_x0000_i1027" | ||
+ | type="#_x0000_t75" style='width:269pt;height:259pt;visibility:visible; | ||
+ | mso-wrap-style:square'><v:imagedata src="Wiki%20Draft%20(1)_files/image015.png" o:title=""/></v:shape><![endif]--><![if !vml]><img border=0 width=359 height=345 | ||
+ | src="Wiki%20Draft%20(1)_files/image016.gif" v:shapes="image6.png"><![endif]></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>Figure X: <span class=SpellE>Pymol</span> | ||
+ | structure of <span class=SpellE>PbgA</span>. <o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Crystal | ||
+ | structure of <span class=SpellE>PbgA</span>, an essential inner transmembrane | ||
+ | protein in <i style='mso-bidi-font-style:normal'>E. coli'' that is used for | ||
+ | regulating LPS synthesis and outer membrane homeostasis. The C-terminal | ||
+ | periplasmic domain is depicted in green. The N-terminal domain is a | ||
+ | five-transmembrane domain depicted in red, yellow, orange, purple, and cyan. <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.2 <span class=SpellE>PbgA</span> | ||
+ | protein similarity <o:p></o:p></span>'''<p class=MsoNormal><span class=SpellE><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'>PbgA</span></span><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'> is structurally related to <span class=SpellE>LtaS</span>, | ||
+ | an enzyme found in many gram-positive bacteria that synthesizes lipoteichoic | ||
+ | acids. <span class=SpellE>PbgA</span>, like <span class=SpellE>LtaS</span>, | ||
+ | contains a hydrophobic binding pocket in its periplasmic domain that is required | ||
+ | for protein activity. However, the crystal structure of the <span class=SpellE>PbgA</span> | ||
+ | domain indicates that it lacks residues required for <span class=SpellE>LtaS</span> | ||
+ | catalytic activity, so it is unlikely to have a homologous enzymatic function</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"Igh9S5xC","properties":{"formattedCitation":"\\super | ||
+ | 3\\nosupersub{}","plainCitation":"3","noteIndex":0},"citationItems":[{"id":619,"uris":["http://zotero.org/users/local/DWdd4k1w/items/HWCQ9FUI"],"itemData":{"id":619,"type":"article-journal","abstract":"Gram-negative | ||
+ | bacteria are surrounded by a complex cell envelope that includes two membranes. | ||
+ | The outer membrane prevents many drugs from entering these cells and is thus a | ||
+ | major determinant of their intrinsic antibiotic resistance. This barrier | ||
+ | function is imparted by the asymmetric architecture of the membrane with | ||
+ | lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner | ||
+ | leaflet. The LPS and phospholipid synthesis pathways share an intermediate. | ||
+ | Proper membrane biogenesis therefore requires that the flux through each | ||
+ | pathway be balanced. In Escherichia coli, a major control point in establishing | ||
+ | this balance is the committed step of LPS synthesis mediated by LpxC. Levels of | ||
+ | this enzyme are controlled through its degradation by the inner membrane | ||
+ | protease FtsH and its presumed adapter protein LapB (YciM). How turnover of | ||
+ | LpxC is controlled has remained unclear for many years. Here, we demonstrate | ||
+ | that the essential protein of unknown function YejM (PbgA) participates in this | ||
+ | regulatory pathway. Suppressors of YejM essentiality were identified in lpxC | ||
+ | and lapB, and LpxC overproduction was shown to be sufficient to allow survival | ||
+ | of ΔyejM mutants. Furthermore, the stability of LpxC was shown to be | ||
+ | reduced in cells lacking YejM, and genetic and physical interactions between | ||
+ | LapB and YejM were detected. Taken together, our results are consistent with a | ||
+ | model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate | ||
+ | LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane | ||
+ | is a major determinant of the intrinsic antibiotic resistance of Gram-negative | ||
+ | bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid, and | ||
+ | the synthesis of these lipid species must be balanced for the membrane to | ||
+ | maintain its barrier function in blocking drug entry. In this study, we | ||
+ | identified an essential protein of unknown function as a key new factor in | ||
+ | modulating LPS synthesis in the model bacterium Escherichia coli. Our results | ||
+ | provide novel insight into how this organism and most likely other | ||
+ | Gram-negative bacteria maintain membrane homeostasis and their intrinsic | ||
+ | resistance to | ||
+ | antibiotics.","container-title":"mBio","DOI":"10.1128/mBio.00939-20","issue":"3","note":"publisher: | ||
+ | American Society for | ||
+ | Microbiology","page":"e00939-20","source":"journals.asm.org | ||
+ | (Atypon)","title":"An Essential Membrane Protein Modulates | ||
+ | the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia | ||
+ | coli","URL":"https://journals.asm.org/doi/10.1128/mBio.00939-20","volume":"11","author":[{"family":"Fivenson","given":"Elayne | ||
+ | M."},{"family":"Bernhardt","given":"Thomas | ||
+ | G."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",5,19]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>3</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Fivenson</span> | ||
+ | & Bernhardt, 2020).<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.3 Initial Proposed Function of <span | ||
+ | class=SpellE>PbgA</span><o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>In | ||
+ | <i style='mso-bidi-font-style:normal'>S. Typhimurium'', cells that use a | ||
+ | two-component regulatory system, <span class=SpellE>PhoPQ</span>, require <span | ||
+ | class=SpellE>PbgA</span> to coordinate this process. The <span class=SpellE>PhoPQ</span> | ||
+ | system induces changes to the outer membrane to protect cells from infection by | ||
+ | sensing changes in the environment. One of the changes that occurs is an | ||
+ | increase in the content of the PL, cardiolipin (CL). <span class=SpellE>PbgA</span> | ||
+ | was found to bind to CL in vitro and since the deletion of <span class=SpellE>PbgA</span> | ||
+ | showed no increase in CL content, it led to the assumption that it acts as a | ||
+ | transporter that brings CL from the inner membrane to the outer membrane</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"uTPTGZpN","properties":{"formattedCitation":"\\super | ||
+ | 12\\nosupersub{}","plainCitation":"12","noteIndex":0},"citationItems":[{"id":628,"uris":["http://zotero.org/users/local/DWdd4k1w/items/K232PHWH"],"itemData":{"id":628,"type":"article-journal","abstract":"Gram-negative | ||
+ | bacteria produce an asymmetric outer membrane (OM) that is particularly | ||
+ | impermeant to many antibiotics and characterized by lipopolysaccharide (LPS) | ||
+ | exclusively at the cell surface. LPS biogenesis remains an ideal target for | ||
+ | therapeutic intervention, as disruption could kill bacteria or increase | ||
+ | sensitivity to existing antibiotics. While it has been known that LPS synthesis | ||
+ | is regulated by proteolytic control of LpxC, the enzyme that catalyzes the | ||
+ | first committed step of LPS synthesis, it remains unknown which signals direct | ||
+ | this regulation. New details have been revealed during study of a cryptic | ||
+ | essential inner membrane protein, YejM. Multiple functions have been proposed | ||
+ | over the years for YejM, including a controversial hypothesis that it | ||
+ | transports cardiolipin from the inner membrane to the OM. Strong evidence now | ||
+ | indicates that YejM senses LPS in the periplasm and directs proteolytic | ||
+ | regulation. Here, we discuss the standing literature of YejM and highlight | ||
+ | exciting new insights into cell envelope | ||
+ | maintenance.","container-title":"mBio","DOI":"10.1128/mBio.02624-20","issue":"6","note":"publisher: | ||
+ | American Society for Microbiology","page":"e02624-20","source":"journals.asm.org | ||
+ | (Atypon)","title":"Restoring Balance to the Outer Membrane: | ||
+ | YejM’s Role in LPS Regulation","title-short":"Restoring | ||
+ | Balance to the Outer Membrane","URL":"https://journals.asm.org/doi/10.1128/mBio.02624-20","volume":"11","author":[{"family":"Simpson","given":"Brent | ||
+ | W."},{"family":"Douglass","given":"Martin | ||
+ | V."},{"family":"Trent","given":"M. | ||
+ | Stephen"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",12,15]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>12</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Simpson et al., 2020). <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>However, | ||
+ | other studies have shown that <span class=SpellE>PbgA</span> may not act as a | ||
+ | cardiolipin transporter as it lacks an outer membrane partner while other | ||
+ | complexes that transport substrates from the inner membrane to the outer | ||
+ | membrane have inner membrane, periplasmic, and outer membrane components. | ||
+ | Additionally, if <span class=SpellE>PbgA</span> were essential for cardiolipin | ||
+ | synthesis, then it would be expected that cardiolipin deficiency would lead to | ||
+ | toxic levels of <span class=SpellE>PbgA</span>, but this does not occur. | ||
+ | Finally, because <span class=SpellE>PbgA</span> is known to have an impact on | ||
+ | outer membrane permeability, but truncations of <span class=SpellE>PbgA</span> | ||
+ | periplasmic domain show outer membrane permeability defects, indicating that | ||
+ | both the inner membrane and periplasmic domain of <span class=SpellE>PbgA</span> | ||
+ | are involved in the same function. Therefore, it is unlikely that <span | ||
+ | class=SpellE>PbgA</span> is involved in cardiolipin transport</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"FLnydd47","properties":{"formattedCitation":"\\super | ||
+ | 12\\nosupersub{}","plainCitation":"12","noteIndex":0},"citationItems":[{"id":628,"uris":["http://zotero.org/users/local/DWdd4k1w/items/K232PHWH"],"itemData":{"id":628,"type":"article-journal","abstract":"Gram-negative | ||
+ | bacteria produce an asymmetric outer membrane (OM) that is particularly | ||
+ | impermeant to many antibiotics and characterized by lipopolysaccharide (LPS) | ||
+ | exclusively at the cell surface. LPS biogenesis remains an ideal target for | ||
+ | therapeutic intervention, as disruption could kill bacteria or increase | ||
+ | sensitivity to existing antibiotics. While it has been known that LPS synthesis | ||
+ | is regulated by proteolytic control of LpxC, the enzyme that catalyzes the | ||
+ | first committed step of LPS synthesis, it remains unknown which signals direct | ||
+ | this regulation. New details have been revealed during study of a cryptic | ||
+ | essential inner membrane protein, YejM. Multiple functions have been proposed | ||
+ | over the years for YejM, including a controversial hypothesis that it | ||
+ | transports cardiolipin from the inner membrane to the OM. Strong evidence now | ||
+ | indicates that YejM senses LPS in the periplasm and directs proteolytic | ||
+ | regulation. Here, we discuss the standing literature of YejM and highlight | ||
+ | exciting new insights into cell envelope | ||
+ | maintenance.","container-title":"mBio","DOI":"10.1128/mBio.02624-20","issue":"6","note":"publisher: | ||
+ | American Society for | ||
+ | Microbiology","page":"e02624-20","source":"journals.asm.org | ||
+ | (Atypon)","title":"Restoring Balance to the Outer Membrane: | ||
+ | YejM’s Role in LPS Regulation","title-short":"Restoring | ||
+ | Balance to the Outer Membrane","URL":"https://journals.asm.org/doi/10.1128/mBio.02624-20","volume":"11","author":[{"family":"Simpson","given":"Brent | ||
+ | W."},{"family":"Douglass","given":"Martin | ||
+ | V."},{"family":"Trent","given":"M. | ||
+ | Stephen"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",12,15]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>12</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Simpson et al., 2020). <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.4 Novel Discovery of <span | ||
+ | class=SpellE>PbgA</span> Function<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>A | ||
+ | recent study suggests that <span class=SpellE>PbgA</span> serves a larger but | ||
+ | undefined role in envelope assembly, such as preventing excessive turnover of <span | ||
+ | class=SpellE>LpxC</span> and promoting <span class=SpellE>LpxC</span> | ||
+ | accumulation by shielding it from the <span class=SpellE>FtsH-LapB</span> | ||
+ | proteolytic system. They also found that the N-terminal transmembrane of <span | ||
+ | class=SpellE>PbgA</span> alone interacts with the <span class=SpellE>LapB</span> | ||
+ | component of the <span class=SpellE>FtsH-LapB</span> proteolytic system to | ||
+ | promote <span class=SpellE>LpxC</span> accumulation</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"OfDNMfny","properties":{"formattedCitation":"\\super | ||
+ | 3\\nosupersub{}","plainCitation":"3","noteIndex":0},"citationItems":[{"id":619,"uris":["http://zotero.org/users/local/DWdd4k1w/items/HWCQ9FUI"],"itemData":{"id":619,"type":"article-journal","abstract":"Gram-negative | ||
+ | bacteria are surrounded by a complex cell envelope that includes two membranes. | ||
+ | The outer membrane prevents many drugs from entering these cells and is thus a | ||
+ | major determinant of their intrinsic antibiotic resistance. This barrier | ||
+ | function is imparted by the asymmetric architecture of the membrane with | ||
+ | lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner | ||
+ | leaflet. The LPS and phospholipid synthesis pathways share an intermediate. | ||
+ | Proper membrane biogenesis therefore requires that the flux through each | ||
+ | pathway be balanced. In Escherichia coli, a major control point in establishing | ||
+ | this balance is the committed step of LPS synthesis mediated by LpxC. Levels of | ||
+ | this enzyme are controlled through its degradation by the inner membrane | ||
+ | protease FtsH and its presumed adapter protein LapB (YciM). How turnover of | ||
+ | LpxC is controlled has remained unclear for many years. Here, we demonstrate | ||
+ | that the essential protein of unknown function YejM (PbgA) participates in this | ||
+ | regulatory pathway. Suppressors of YejM essentiality were identified in lpxC | ||
+ | and lapB, and LpxC overproduction was shown to be sufficient to allow survival | ||
+ | of ΔyejM mutants. Furthermore, the stability of LpxC was shown to be | ||
+ | reduced in cells lacking YejM, and genetic and physical interactions between | ||
+ | LapB and YejM were detected. Taken together, our results are consistent with a | ||
+ | model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate | ||
+ | LPS synthesis and maintain membrane homeostasis.\nIMPORTANCE The outer membrane | ||
+ | is a major determinant of the intrinsic antibiotic resistance of Gram-negative | ||
+ | bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid, and | ||
+ | the synthesis of these lipid species must be balanced for the membrane to | ||
+ | maintain its barrier function in blocking drug entry. In this study, we | ||
+ | identified an essential protein of unknown function as a key new factor in | ||
+ | modulating LPS synthesis in the model bacterium Escherichia coli. Our results | ||
+ | provide novel insight into how this organism and most likely other | ||
+ | Gram-negative bacteria maintain membrane homeostasis and their intrinsic | ||
+ | resistance to | ||
+ | antibiotics.","container-title":"mBio","DOI":"10.1128/mBio.00939-20","issue":"3","note":"publisher: | ||
+ | American Society for | ||
+ | Microbiology","page":"e00939-20","source":"journals.asm.org | ||
+ | (Atypon)","title":"An Essential Membrane Protein Modulates | ||
+ | the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia | ||
+ | coli","URL":"https://journals.asm.org/doi/10.1128/mBio.00939-20","volume":"11","author":[{"family":"Fivenson","given":"Elayne | ||
+ | M."},{"family":"Bernhardt","given":"Thomas | ||
+ | G."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",5,19]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>3</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Fivenson</span> | ||
+ | & Bernhardt, 2020).<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><span | ||
+ | style='mso-spacerun:yes'> </span><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>Polymyxin Antibiotics and Antibiotic | ||
+ | Resistance:<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.1. Polymyxin Antibiotics<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Polymyxins | ||
+ | are an important class of antibiotics used in the treatment of systemic | ||
+ | infections caused by multidrug-resistant gram-negative bacteria such as | ||
+ | pseudomonas aeruginosa</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"wRfcvQq5","properties":{"formattedCitation":"\\super | ||
+ | 13\\nosupersub{}","plainCitation":"13","noteIndex":0},"citationItems":[{"id":608,"uris":["http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG"],"itemData":{"id":608,"type":"chapter","abstract":"Polymyxins | ||
+ | are a class of medications used in the management and treatment of systemic | ||
+ | infections caused by susceptible strains of multidrug-resistant organisms such | ||
+ | as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This | ||
+ | activity reviews the indications, action, and contraindications for polymyxin | ||
+ | as a valuable agent in the treatment of multidrug-resistant infections. This | ||
+ | activity will highlight the mechanism of action, adverse event profile, and | ||
+ | other key factors pertinent for members of the interprofessional team in the | ||
+ | treatment of patients with polymyxins who are infected by susceptible strains | ||
+ | of gram-negative pathogens resistant most of the other antibiotic | ||
+ | classes.","call-number":"NBK557540","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island | ||
+ | (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: | ||
+ | 32491472","publisher":"StatPearls | ||
+ | Publishing","publisher-place":"Treasure Island | ||
+ | (FL)","source":"PubMed","title":"Polymyxin","URL":"http://www.ncbi.nlm.nih.gov/books/NBK557540/","author":[{"family":"Shatri","given":"Genti"},{"family":"Tadi","given":"Prasanna"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>13</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Shatri</span> | ||
+ | & <span class=SpellE>Tadi</span>, 2022). Currently, these antibiotics are | ||
+ | used as a last line of treatment against such infections</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"n7wlnoFI","properties":{"formattedCitation":"\\super | ||
+ | 13\\nosupersub{}","plainCitation":"13","noteIndex":0},"citationItems":[{"id":608,"uris":["http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG"],"itemData":{"id":608,"type":"chapter","abstract":"Polymyxins | ||
+ | are a class of medications used in the management and treatment of systemic | ||
+ | infections caused by susceptible strains of multidrug-resistant organisms such | ||
+ | as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This | ||
+ | activity reviews the indications, action, and contraindications for polymyxin as | ||
+ | a valuable agent in the treatment of multidrug-resistant infections. This | ||
+ | activity will highlight the mechanism of action, adverse event profile, and | ||
+ | other key factors pertinent for members of the interprofessional team in the | ||
+ | treatment of patients with polymyxins who are infected by susceptible strains | ||
+ | of gram-negative pathogens resistant most of the other antibiotic | ||
+ | classes.","call-number":"NBK557540","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island | ||
+ | (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: | ||
+ | 32491472","publisher":"StatPearls | ||
+ | Publishing","publisher-place":"Treasure Island | ||
+ | (FL)","source":"PubMed","title":"Polymyxin","URL":"http://www.ncbi.nlm.nih.gov/books/NBK557540/","author":[{"family":"Shatri","given":"Genti"},{"family":"Tadi","given":"Prasanna"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>13</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Shatri</span> | ||
+ | & <span class=SpellE>Tadi</span>, 2022). The main drugs in clinical use | ||
+ | within this antibiotic class are Polymyxin B and Polymyxin E (also called | ||
+ | colistin), which target infections of the urinary tract, meninges, and | ||
+ | bloodstream</span><!--[if supportFields]><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"tYAD01ia","properties":{"formattedCitation":"\\super | ||
+ | 13\\nosupersub{}","plainCitation":"13","noteIndex":0},"citationItems":[{"id":608,"uris":["http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG"],"itemData":{"id":608,"type":"chapter","abstract":"Polymyxins | ||
+ | are a class of medications used in the management and treatment of systemic | ||
+ | infections caused by susceptible strains of multidrug-resistant organisms such | ||
+ | as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This | ||
+ | activity reviews the indications, action, and contraindications for polymyxin | ||
+ | as a valuable agent in the treatment of multidrug-resistant infections. This | ||
+ | activity will highlight the mechanism of action, adverse event profile, and | ||
+ | other key factors pertinent for members of the interprofessional team in the | ||
+ | treatment of patients with polymyxins who are infected by susceptible strains | ||
+ | of gram-negative pathogens resistant most of the other antibiotic | ||
+ | classes.","call-number":"NBK557540","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island | ||
+ | (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: | ||
+ | 32491472","publisher":"StatPearls Publishing","publisher-place":"Treasure | ||
+ | Island | ||
+ | (FL)","source":"PubMed","title":"Polymyxin","URL":"http://www.ncbi.nlm.nih.gov/books/NBK557540/","author":[{"family":"Shatri","given":"Genti"},{"family":"Tadi","given":"Prasanna"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>13</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Shatri</span> | ||
+ | & <span class=SpellE>Tadi</span>, 2022). <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.2. Mechanism of Action of Colistin<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Polymyxins | ||
+ | target the lipid A core of LPS</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"7ZVsLxVx","properties":{"formattedCitation":"\\super | ||
+ | 14\\nosupersub{}","plainCitation":"14","noteIndex":0},"citationItems":[{"id":612,"uris":["http://zotero.org/users/local/DWdd4k1w/items/S5FNUZAL"],"itemData":{"id":612,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | (LPS) resides in the outer membrane of Gram-negative bacteria where it is | ||
+ | responsible for barrier function1,2. LPS can cause death as a result of septic | ||
+ | shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite | ||
+ | the clinical importance of polymyxins and the emergence of multidrug resistant | ||
+ | strains5, our understanding of the bacterial factors that regulate LPS | ||
+ | biogenesis is incomplete. Here we characterize the inner membrane protein PbgA | ||
+ | and report that its depletion attenuates the virulence of Escherichia coli by | ||
+ | reducing levels of LPS and outer membrane integrity. In contrast to previous | ||
+ | claims that PbgA functions as a cardiolipin transporter6–9, our structural | ||
+ | analyses and physiological studies identify a lipid A-binding motif along the | ||
+ | periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides | ||
+ | selectively bind to LPS in vitro and inhibit the growth of diverse | ||
+ | Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, | ||
+ | genetic and pharmacological experiments uncover a model in which direct | ||
+ | periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by | ||
+ | regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12. | ||
+ | In summary, we find that PbgA has an unexpected but essential role in the | ||
+ | regulation of LPS biogenesis, presents a new structural basis for the selective | ||
+ | recognition of lipids, and provides opportunities for future antibiotic | ||
+ | discovery.","container-title":"Nature","DOI":"10.1038/s41586-020-2597-x","ISSN":"1476-4687","issue":"7821","language":"en","license":"2020 | ||
+ | The Author(s), under exclusive licence to Springer Nature | ||
+ | Limited","note":"number: 7821\npublisher: Nature Publishing | ||
+ | Group","page":"479-483","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of the essential inner membrane lipopolysaccharide–PbgA | ||
+ | complex","URL":"http://www.nature.com/articles/s41586-020-2597-x","volume":"584","author":[{"family":"Clairfeuille","given":"Thomas"},{"family":"Buchholz","given":"Kerry | ||
+ | R."},{"family":"Li","given":"Qingling"},{"family":"Verschueren","given":"Erik"},{"family":"Liu","given":"Peter"},{"family":"Sangaraju","given":"Dewakar"},{"family":"Park","given":"Summer"},{"family":"Noland","given":"Cameron | ||
+ | L."},{"family":"Storek","given":"Kelly | ||
+ | M."},{"family":"Nickerson","given":"Nicholas | ||
+ | N."},{"family":"Martin","given":"Lynn"},{"family":"Dela | ||
+ | Vega","given":"Trisha"},{"family":"Miu","given":"Anh"},{"family":"Reeder","given":"Janina"},{"family":"Ruiz-Gonzalez","given":"Maria"},{"family":"Swem","given":"Danielle"},{"family":"Han","given":"Guanghui"},{"family":"DePonte","given":"Daniel | ||
+ | P."},{"family":"Hunter","given":"Mark | ||
+ | S."},{"family":"Gati","given":"Cornelius"},{"family":"Shahidi-Latham","given":"Sheerin"},{"family":"Xu","given":"Min"},{"family":"Skelton","given":"Nicholas"},{"family":"Sellers","given":"Benjamin | ||
+ | D."},{"family":"Skippington","given":"Elizabeth"},{"family":"Sandoval","given":"Wendy"},{"family":"Hanan","given":"Emily | ||
+ | J."},{"family":"Payandeh","given":"Jian"},{"family":"Rutherford","given":"Steven | ||
+ | T."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>14</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Clairfeuille</span> | ||
+ | et al., 2020). These antibiotics destabilize the PLs and LPS present in the | ||
+ | outer membrane of gram-negative bacteria</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"c9oHqDO2","properties":{"formattedCitation":"\\super | ||
+ | 13\\nosupersub{}","plainCitation":"13","noteIndex":0},"citationItems":[{"id":608,"uris":["http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG"],"itemData":{"id":608,"type":"chapter","abstract":"Polymyxins | ||
+ | are a class of medications used in the management and treatment of systemic | ||
+ | infections caused by susceptible strains of multidrug-resistant organisms such | ||
+ | as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This activity | ||
+ | reviews the indications, action, and contraindications for polymyxin as a | ||
+ | valuable agent in the treatment of multidrug-resistant infections. This | ||
+ | activity will highlight the mechanism of action, adverse event profile, and | ||
+ | other key factors pertinent for members of the interprofessional team in the | ||
+ | treatment of patients with polymyxins who are infected by susceptible strains | ||
+ | of gram-negative pathogens resistant most of the other antibiotic | ||
+ | classes.","call-number":"NBK557540","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island | ||
+ | (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: | ||
+ | 32491472","publisher":"StatPearls Publishing","publisher-place":"Treasure | ||
+ | Island | ||
+ | (FL)","source":"PubMed","title":"Polymyxin","URL":"http://www.ncbi.nlm.nih.gov/books/NBK557540/","author":[{"family":"Shatri","given":"Genti"},{"family":"Tadi","given":"Prasanna"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>13</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Shatri</span> | ||
+ | & <span class=SpellE>Tadi</span>, 2022). Since polymyxins are positively | ||
+ | charged, they electrostatically interact with the phosphate groups on both of | ||
+ | the negatively charged phosphorylated sugars that make up lipid A</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"Htyh6yVV","properties":{"formattedCitation":"\\super | ||
+ | 13\\nosupersub{}","plainCitation":"13","noteIndex":0},"citationItems":[{"id":608,"uris":["http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG"],"itemData":{"id":608,"type":"chapter","abstract":"Polymyxins | ||
+ | are a class of medications used in the management and treatment of systemic | ||
+ | infections caused by susceptible strains of multidrug-resistant organisms such | ||
+ | as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This | ||
+ | activity reviews the indications, action, and contraindications for polymyxin | ||
+ | as a valuable agent in the treatment of multidrug-resistant infections. This | ||
+ | activity will highlight the mechanism of action, adverse event profile, and | ||
+ | other key factors pertinent for members of the interprofessional team in the | ||
+ | treatment of patients with polymyxins who are infected by susceptible strains | ||
+ | of gram-negative pathogens resistant most of the other antibiotic | ||
+ | classes.","call-number":"NBK557540","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: 32491472","publisher":"StatPearls | ||
+ | Publishing","publisher-place":"Treasure Island | ||
+ | (FL)","source":"PubMed","title":"Polymyxin","URL":"http://www.ncbi.nlm.nih.gov/books/NBK557540/","author":[{"family":"Shatri","given":"Genti"},{"family":"Tadi","given":"Prasanna"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>13</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Shatri</span> | ||
+ | & <span class=SpellE>Tadi</span>, 2022). This causes the divalent cations | ||
+ | (such as calcium and magnesium) from the phosphate groups within the membrane | ||
+ | lipids to become displaced, creating increased permeability</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"dd4opF7M","properties":{"formattedCitation":"\\super | ||
+ | 13\\nosupersub{}","plainCitation":"13","noteIndex":0},"citationItems":[{"id":608,"uris":["http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG"],"itemData":{"id":608,"type":"chapter","abstract":"Polymyxins | ||
+ | are a class of medications used in the management and treatment of systemic | ||
+ | infections caused by susceptible strains of multidrug-resistant organisms such | ||
+ | as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This activity | ||
+ | reviews the indications, action, and contraindications for polymyxin as a | ||
+ | valuable agent in the treatment of multidrug-resistant infections. This | ||
+ | activity will highlight the mechanism of action, adverse event profile, and | ||
+ | other key factors pertinent for members of the interprofessional team in the | ||
+ | treatment of patients with polymyxins who are infected by susceptible strains | ||
+ | of gram-negative pathogens resistant most of the other antibiotic | ||
+ | classes.","call-number":"NBK557540","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island | ||
+ | (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: | ||
+ | 32491472","publisher":"StatPearls Publishing","publisher-place":"Treasure | ||
+ | Island | ||
+ | (FL)","source":"PubMed","title":"Polymyxin","URL":"http://www.ncbi.nlm.nih.gov/books/NBK557540/","author":[{"family":"Shatri","given":"Genti"},{"family":"Tadi","given":"Prasanna"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>13</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Shatri</span> | ||
+ | & <span class=SpellE>Tadi</span>, 2022). This leads to the outer membrane | ||
+ | becoming disrupted, allowing small molecules and other intracellular contents | ||
+ | to leak out of the cell and cause bacterial cell death</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"KQVXUWc2","properties":{"formattedCitation":"\\super | ||
+ | 13\\nosupersub{}","plainCitation":"13","noteIndex":0},"citationItems":[{"id":608,"uris":["http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG"],"itemData":{"id":608,"type":"chapter","abstract":"Polymyxins | ||
+ | are a class of medications used in the management and treatment of systemic | ||
+ | infections caused by susceptible strains of multidrug-resistant organisms such | ||
+ | as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This | ||
+ | activity reviews the indications, action, and contraindications for polymyxin | ||
+ | as a valuable agent in the treatment of multidrug-resistant infections. This | ||
+ | activity will highlight the mechanism of action, adverse event profile, and | ||
+ | other key factors pertinent for members of the interprofessional team in the | ||
+ | treatment of patients with polymyxins who are infected by susceptible strains of | ||
+ | gram-negative pathogens resistant most of the other antibiotic | ||
+ | classes.","call-number":"NBK557540","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: 32491472","publisher":"StatPearls | ||
+ | Publishing","publisher-place":"Treasure Island | ||
+ | (FL)","source":"PubMed","title":"Polymyxin","URL":"http://www.ncbi.nlm.nih.gov/books/NBK557540/","author":[{"family":"Shatri","given":"Genti"},{"family":"Tadi","given":"Prasanna"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>13</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Shatri</span> | ||
+ | & <span class=SpellE>Tadi</span>, 2022). <o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>In | ||
+ | addition, polymyxins can neutralize the endotoxin effect of pathogens</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"jz6XGLzg","properties":{"formattedCitation":"\\super | ||
+ | 13\\nosupersub{}","plainCitation":"13","noteIndex":0},"citationItems":[{"id":608,"uris":["http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG"],"itemData":{"id":608,"type":"chapter","abstract":"Polymyxins | ||
+ | are a class of medications used in the management and treatment of systemic | ||
+ | infections caused by susceptible strains of multidrug-resistant organisms such | ||
+ | as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This activity | ||
+ | reviews the indications, action, and contraindications for polymyxin as a | ||
+ | valuable agent in the treatment of multidrug-resistant infections. This | ||
+ | activity will highlight the mechanism of action, adverse event profile, and | ||
+ | other key factors pertinent for members of the interprofessional team in the | ||
+ | treatment of patients with polymyxins who are infected by susceptible strains | ||
+ | of gram-negative pathogens resistant most of the other antibiotic | ||
+ | classes.","call-number":"NBK557540","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island | ||
+ | (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: | ||
+ | 32491472","publisher":"StatPearls | ||
+ | Publishing","publisher-place":"Treasure Island | ||
+ | (FL)","source":"PubMed","title":"Polymyxin","URL":"http://www.ncbi.nlm.nih.gov/books/NBK557540/","author":[{"family":"Shatri","given":"Genti"},{"family":"Tadi","given":"Prasanna"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>13</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Shatri</span> | ||
+ | & <span class=SpellE>Tadi</span>, 2022). Since the endotoxic part of | ||
+ | gram-negative bacteria corresponds to the lipid A core, polymyxins can bind to | ||
+ | the LPS that was released as a result of cellular death</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"Clnnlrv8","properties":{"formattedCitation":"\\super | ||
+ | 13\\nosupersub{}","plainCitation":"13","noteIndex":0},"citationItems":[{"id":608,"uris":["http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG"],"itemData":{"id":608,"type":"chapter","abstract":"Polymyxins | ||
+ | are a class of medications used in the management and treatment of systemic | ||
+ | infections caused by susceptible strains of multidrug-resistant organisms such | ||
+ | as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This | ||
+ | activity reviews the indications, action, and contraindications for polymyxin | ||
+ | as a valuable agent in the treatment of multidrug-resistant infections. This | ||
+ | activity will highlight the mechanism of action, adverse event profile, and | ||
+ | other key factors pertinent for members of the interprofessional team in the | ||
+ | treatment of patients with polymyxins who are infected by susceptible strains | ||
+ | of gram-negative pathogens resistant most of the other antibiotic | ||
+ | classes.","call-number":"NBK557540","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: | ||
+ | 32491472","publisher":"StatPearls | ||
+ | Publishing","publisher-place":"Treasure Island | ||
+ | (FL)","source":"PubMed","title":"Polymyxin","URL":"http://www.ncbi.nlm.nih.gov/books/NBK557540/","author":[{"family":"Shatri","given":"Genti"},{"family":"Tadi","given":"Prasanna"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>13</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Shatri</span> | ||
+ | & <span class=SpellE>Tadi</span>, 2022). This results in the neutralization | ||
+ | of the endotoxin, preventing its effects in circulation</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"PhtPbk2K","properties":{"formattedCitation":"\\super | ||
+ | 13\\nosupersub{}","plainCitation":"13","noteIndex":0},"citationItems":[{"id":608,"uris":["http://zotero.org/users/local/DWdd4k1w/items/U2DBWKJG"],"itemData":{"id":608,"type":"chapter","abstract":"Polymyxins | ||
+ | are a class of medications used in the management and treatment of systemic | ||
+ | infections caused by susceptible strains of multidrug-resistant organisms such | ||
+ | as Pseudomonas aeruginosa. It is in the antibiotic class of drugs. This | ||
+ | activity reviews the indications, action, and contraindications for polymyxin | ||
+ | as a valuable agent in the treatment of multidrug-resistant infections. This | ||
+ | activity will highlight the mechanism of action, adverse event profile, and | ||
+ | other key factors pertinent for members of the interprofessional team in the | ||
+ | treatment of patients with polymyxins who are infected by susceptible strains | ||
+ | of gram-negative pathogens resistant most of the other antibiotic | ||
+ | classes.","call-number":"NBK557540","container-title":"StatPearls","event-place":"Treasure | ||
+ | Island | ||
+ | (FL)","language":"eng","license":"Copyright | ||
+ | © 2022, StatPearls Publishing LLC.","note":"PMID: | ||
+ | 32491472","publisher":"StatPearls | ||
+ | Publishing","publisher-place":"Treasure Island | ||
+ | (FL)","source":"PubMed","title":"Polymyxin","URL":"http://www.ncbi.nlm.nih.gov/books/NBK557540/","author":[{"family":"Shatri","given":"Genti"},{"family":"Tadi","given":"Prasanna"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2022"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>13</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Shatri</span> | ||
+ | & <span class=SpellE>Tadi</span>, 2022).<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | mso-no-proof:yes'><!--[if gte vml 1]><v:shape id="image3.png" o:spid="_x0000_i1026" | ||
+ | type="#_x0000_t75" style='width:457pt;height:217.5pt;visibility:visible; | ||
+ | mso-wrap-style:square'><v:imagedata src="Wiki%20Draft%20(1)_files/image017.png" o:title="" | ||
+ | cropbottom="1110f" cropleft="630f" cropright="528f"/></v:shape><![endif]--><![if !vml]><img border=0 width=609 height=290 | ||
+ | src="Wiki%20Draft%20(1)_files/image018.gif" v:shapes="image3.png"><![endif]></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>Figure X:</span>'''<span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> Colistin electrostatically | ||
+ | interacts with the lipid A core of LPS, creating a disruption of the membrane | ||
+ | and allowing small molecules to leak out of the cell.<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>X.3. Antibiotic Resistance<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Polymyxins | ||
+ | are an extremely important and clinically relevant class of drugs since they | ||
+ | are the last line of <span class=SpellE>defence</span> against gram-negative | ||
+ | bacteria that are resistant to all other antibiotics</span><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"1nRHZKva","properties":{"formattedCitation":"\\super | ||
+ | 14\\nosupersub{}","plainCitation":"14","noteIndex":0},"citationItems":[{"id":612,"uris":["http://zotero.org/users/local/DWdd4k1w/items/S5FNUZAL"],"itemData":{"id":612,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible | ||
+ | for barrier function1,2. LPS can cause death as a result of septic shock, and | ||
+ | its lipid A core is the target of polymyxin antibiotics3,4. Despite the | ||
+ | clinical importance of polymyxins and the emergence of multidrug resistant | ||
+ | strains5, our understanding of the bacterial factors that regulate LPS | ||
+ | biogenesis is incomplete. Here we characterize the inner membrane protein PbgA | ||
+ | and report that its depletion attenuates the virulence of Escherichia coli by | ||
+ | reducing levels of LPS and outer membrane integrity. In contrast to previous | ||
+ | claims that PbgA functions as a cardiolipin transporter6–9, our structural | ||
+ | analyses and physiological studies identify a lipid A-binding motif along the | ||
+ | periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides | ||
+ | selectively bind to LPS in vitro and inhibit the growth of diverse | ||
+ | Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, | ||
+ | genetic and pharmacological experiments uncover a model in which direct | ||
+ | periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by | ||
+ | regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12. | ||
+ | In summary, we find that PbgA has an unexpected but essential role in the | ||
+ | regulation of LPS biogenesis, presents a new structural basis for the selective | ||
+ | recognition of lipids, and provides opportunities for future antibiotic | ||
+ | discovery.","container-title":"Nature","DOI":"10.1038/s41586-020-2597-x","ISSN":"1476-4687","issue":"7821","language":"en","license":"2020 | ||
+ | The Author(s), under exclusive licence to Springer Nature | ||
+ | Limited","note":"number: 7821\npublisher: Nature Publishing | ||
+ | Group","page":"479-483","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of the essential inner membrane lipopolysaccharide–PbgA | ||
+ | complex","URL":"http://www.nature.com/articles/s41586-020-2597-x","volume":"584","author":[{"family":"Clairfeuille","given":"Thomas"},{"family":"Buchholz","given":"Kerry | ||
+ | R."},{"family":"Li","given":"Qingling"},{"family":"Verschueren","given":"Erik"},{"family":"Liu","given":"Peter"},{"family":"Sangaraju","given":"Dewakar"},{"family":"Park","given":"Summer"},{"family":"Noland","given":"Cameron | ||
+ | L."},{"family":"Storek","given":"Kelly | ||
+ | M."},{"family":"Nickerson","given":"Nicholas | ||
+ | N."},{"family":"Martin","given":"Lynn"},{"family":"Dela | ||
+ | Vega","given":"Trisha"},{"family":"Miu","given":"Anh"},{"family":"Reeder","given":"Janina"},{"family":"Ruiz-Gonzalez","given":"Maria"},{"family":"Swem","given":"Danielle"},{"family":"Han","given":"Guanghui"},{"family":"DePonte","given":"Daniel | ||
+ | P."},{"family":"Hunter","given":"Mark | ||
+ | S."},{"family":"Gati","given":"Cornelius"},{"family":"Shahidi-Latham","given":"Sheerin"},{"family":"Xu","given":"Min"},{"family":"Skelton","given":"Nicholas"},{"family":"Sellers","given":"Benjamin | ||
+ | D."},{"family":"Skippington","given":"Elizabeth"},{"family":"Sandoval","given":"Wendy"},{"family":"Hanan","given":"Emily | ||
+ | J."},{"family":"Payandeh","given":"Jian"},{"family":"Rutherford","given":"Steven | ||
+ | T."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>14</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Clairfeuille</span> | ||
+ | et al., 2020). Unfortunately, there is an emergence of bacteria that are also | ||
+ | resistant to polymyxins</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"d0lBYWG3","properties":{"formattedCitation":"\\super | ||
+ | 14\\nosupersub{}","plainCitation":"14","noteIndex":0},"citationItems":[{"id":612,"uris":["http://zotero.org/users/local/DWdd4k1w/items/S5FNUZAL"],"itemData":{"id":612,"type":"article-journal","abstract":"Lipopolysaccharide | ||
+ | (LPS) resides in the outer membrane of Gram-negative bacteria where it is | ||
+ | responsible for barrier function1,2. LPS can cause death as a result of septic | ||
+ | shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite | ||
+ | the clinical importance of polymyxins and the emergence of multidrug resistant | ||
+ | strains5, our understanding of the bacterial factors that regulate LPS | ||
+ | biogenesis is incomplete. Here we characterize the inner membrane protein PbgA | ||
+ | and report that its depletion attenuates the virulence of Escherichia coli by | ||
+ | reducing levels of LPS and outer membrane integrity. In contrast to previous | ||
+ | claims that PbgA functions as a cardiolipin transporter6–9, our structural | ||
+ | analyses and physiological studies identify a lipid A-binding motif along the | ||
+ | periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides | ||
+ | selectively bind to LPS in vitro and inhibit the growth of diverse | ||
+ | Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, | ||
+ | genetic and pharmacological experiments uncover a model in which direct periplasmic | ||
+ | sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating | ||
+ | the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12. In summary, | ||
+ | we find that PbgA has an unexpected but essential role in the regulation of LPS | ||
+ | biogenesis, presents a new structural basis for the selective recognition of | ||
+ | lipids, and provides opportunities for future antibiotic | ||
+ | discovery.","container-title":"Nature","DOI":"10.1038/s41586-020-2597-x","ISSN":"1476-4687","issue":"7821","language":"en","license":"2020 | ||
+ | The Author(s), under exclusive licence to Springer Nature | ||
+ | Limited","note":"number: 7821\npublisher: Nature Publishing | ||
+ | Group","page":"479-483","source":"www-nature-com.libaccess.lib.mcmaster.ca","title":"Structure | ||
+ | of the essential inner membrane lipopolysaccharide–PbgA | ||
+ | complex","URL":"http://www.nature.com/articles/s41586-020-2597-x","volume":"584","author":[{"family":"Clairfeuille","given":"Thomas"},{"family":"Buchholz","given":"Kerry | ||
+ | R."},{"family":"Li","given":"Qingling"},{"family":"Verschueren","given":"Erik"},{"family":"Liu","given":"Peter"},{"family":"Sangaraju","given":"Dewakar"},{"family":"Park","given":"Summer"},{"family":"Noland","given":"Cameron | ||
+ | L."},{"family":"Storek","given":"Kelly | ||
+ | M."},{"family":"Nickerson","given":"Nicholas | ||
+ | N."},{"family":"Martin","given":"Lynn"},{"family":"Dela | ||
+ | Vega","given":"Trisha"},{"family":"Miu","given":"Anh"},{"family":"Reeder","given":"Janina"},{"family":"Ruiz-Gonzalez","given":"Maria"},{"family":"Swem","given":"Danielle"},{"family":"Han","given":"Guanghui"},{"family":"DePonte","given":"Daniel | ||
+ | P."},{"family":"Hunter","given":"Mark | ||
+ | S."},{"family":"Gati","given":"Cornelius"},{"family":"Shahidi-Latham","given":"Sheerin"},{"family":"Xu","given":"Min"},{"family":"Skelton","given":"Nicholas"},{"family":"Sellers","given":"Benjamin | ||
+ | D."},{"family":"Skippington","given":"Elizabeth"},{"family":"Sandoval","given":"Wendy"},{"family":"Hanan","given":"Emily | ||
+ | J."},{"family":"Payandeh","given":"Jian"},{"family":"Rutherford","given":"Steven | ||
+ | T."}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2020",8]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>14</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (<span class=SpellE>Clairfeuille</span> | ||
+ | et al., 2020). One bacterial resistance mechanism that has been discovered is | ||
+ | due to the expression of <span class=SpellE>EptA</span>, a protein part of the | ||
+ | same family as PbgA</span><!--[if supportFields]><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-begin'></span> | ||
+ | ADDIN ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"ZB2uPOlP","properties":{"formattedCitation":"\\super | ||
+ | 15\\nosupersub{}","plainCitation":"15","noteIndex":0},"citationItems":[{"id":610,"uris":["http://zotero.org/users/local/DWdd4k1w/items/4G5T5MW8"],"itemData":{"id":610,"type":"article-journal","abstract":"Polymyxins, | ||
+ | a family of cationic antimicrobial cyclic peptides, act as a last line of | ||
+ | defense against severe infections by Gram-negative pathogens with carbapenem | ||
+ | resistance. In addition to the intrinsic resistance to polymyxin E (colistin) | ||
+ | conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance | ||
+ | gene mcr-1 has been disseminated globally since the first discovery in Southern | ||
+ | China, in late 2015. However, the molecular mechanisms for both intrinsic and | ||
+ | transferable resistance to colistin remain largely unknown. Here, we aim to | ||
+ | address this gap in the knowledge of these proteins. Structural and functional | ||
+ | analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity | ||
+ | that is required for the entry of the lipid substrate, phosphatidylethanolamine | ||
+ | (PE). The in vitro and in vivo data together have allowed us to visualize the | ||
+ | similarities in catalytic activity shared by EptA and MCR-1 and -2. The | ||
+ | expression of either EptA or MCR-1 or -2 is shown to remodel the surface of | ||
+ | enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella | ||
+ | pneumoniae, etc.), rendering them resistant to colistin. The parallels in the | ||
+ | PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a | ||
+ | comprehensive understanding of both intrinsic and transferable colistin | ||
+ | resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two | ||
+ | domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase) | ||
+ | are not functionally exchangeable. Taken together, the results represent a | ||
+ | common mechanism for intrinsic and transferable PEA resistance to polymyxin, a | ||
+ | last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA | ||
+ | and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to | ||
+ | colistin, a final resort against carbapenem-resistant pathogens. Structural and | ||
+ | functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid | ||
+ | substrate-recognizing cavities, which explains intrinsic and transferable | ||
+ | colistin resistance in gut bacteria. A similar mechanism is proposed for the | ||
+ | catalytic activities of EptA and MCR-1 and -2. Together, they constitute a | ||
+ | common mechanism for intrinsic and transferable polymyxin | ||
+ | resistance.","container-title":"mBio","DOI":"10.1128/mBio.02317-17","issue":"2","note":"publisher: | ||
+ | American Society for | ||
+ | Microbiology","page":"e02317-17","source":"journals.asm.org | ||
+ | (Atypon)","title":"An Evolutionarily Conserved Mechanism | ||
+ | for Intrinsic and Transferable Polymyxin Resistance","URL":"https://journals.asm.org/doi/full/10.1128/mBio.02317-17","volume":"9","author":[{"family":"Xu","given":"Yongchang"},{"family":"Wei","given":"Wenhui"},{"family":"Lei","given":"Sheng"},{"family":"Lin","given":"Jingxia"},{"family":"Srinivas","given":"Swaminath"},{"family":"Feng","given":"Youjun"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2018",4,10]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>15</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Xu et al., 2018). This protein has | ||
+ | been shown to remodel the surface of the bacteria, making it resistant to | ||
+ | colistin</span><!--[if supportFields]><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"W7GaEfgH","properties":{"formattedCitation":"\\super | ||
+ | 15\\nosupersub{}","plainCitation":"15","noteIndex":0},"citationItems":[{"id":610,"uris":["http://zotero.org/users/local/DWdd4k1w/items/4G5T5MW8"],"itemData":{"id":610,"type":"article-journal","abstract":"Polymyxins, | ||
+ | a family of cationic antimicrobial cyclic peptides, act as a last line of | ||
+ | defense against severe infections by Gram-negative pathogens with carbapenem | ||
+ | resistance. In addition to the intrinsic resistance to polymyxin E (colistin) | ||
+ | conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance | ||
+ | gene mcr-1 has been disseminated globally since the first discovery in Southern | ||
+ | China, in late 2015. However, the molecular mechanisms for both intrinsic and | ||
+ | transferable resistance to colistin remain largely unknown. Here, we aim to | ||
+ | address this gap in the knowledge of these proteins. Structural and functional | ||
+ | analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity | ||
+ | that is required for the entry of the lipid substrate, phosphatidylethanolamine | ||
+ | (PE). The in vitro and in vivo data together have allowed us to visualize the | ||
+ | similarities in catalytic activity shared by EptA and MCR-1 and -2. The | ||
+ | expression of either EptA or MCR-1 or -2 is shown to remodel the surface of | ||
+ | enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella | ||
+ | pneumoniae, etc.), rendering them resistant to colistin. The parallels in the | ||
+ | PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a | ||
+ | comprehensive understanding of both intrinsic and transferable colistin | ||
+ | resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two | ||
+ | domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase) | ||
+ | are not functionally exchangeable. Taken together, the results represent a | ||
+ | common mechanism for intrinsic and transferable PEA resistance to polymyxin, a | ||
+ | last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA | ||
+ | and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to | ||
+ | colistin, a final resort against carbapenem-resistant pathogens. Structural and | ||
+ | functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid | ||
+ | substrate-recognizing cavities, which explains intrinsic and transferable colistin | ||
+ | resistance in gut bacteria. A similar mechanism is proposed for the catalytic | ||
+ | activities of EptA and MCR-1 and -2. Together, they constitute a common | ||
+ | mechanism for intrinsic and transferable polymyxin | ||
+ | resistance.","container-title":"mBio","DOI":"10.1128/mBio.02317-17","issue":"2","note":"publisher: | ||
+ | American Society for | ||
+ | Microbiology","page":"e02317-17","source":"journals.asm.org | ||
+ | (Atypon)","title":"An Evolutionarily Conserved Mechanism | ||
+ | for Intrinsic and Transferable Polymyxin | ||
+ | Resistance","URL":"https://journals.asm.org/doi/full/10.1128/mBio.02317-17","volume":"9","author":[{"family":"Xu","given":"Yongchang"},{"family":"Wei","given":"Wenhui"},{"family":"Lei","given":"Sheng"},{"family":"Lin","given":"Jingxia"},{"family":"Srinivas","given":"Swaminath"},{"family":"Feng","given":"Youjun"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2018",4,10]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>15</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Xu et al., 2018). <span | ||
+ | class=SpellE>EptA</span> does this by modifying the phosphate groups on both of | ||
+ | the phosphorylated sugars on lipid A; thereby, reducing its overall negative | ||
+ | charge</span><!--[if supportFields]><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"wH3osBJS","properties":{"formattedCitation":"\\super | ||
+ | 15\\nosupersub{}","plainCitation":"15","noteIndex":0},"citationItems":[{"id":610,"uris":["http://zotero.org/users/local/DWdd4k1w/items/4G5T5MW8"],"itemData":{"id":610,"type":"article-journal","abstract":"Polymyxins, | ||
+ | a family of cationic antimicrobial cyclic peptides, act as a last line of | ||
+ | defense against severe infections by Gram-negative pathogens with carbapenem | ||
+ | resistance. In addition to the intrinsic resistance to polymyxin E (colistin) | ||
+ | conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance | ||
+ | gene mcr-1 has been disseminated globally since the first discovery in Southern | ||
+ | China, in late 2015. However, the molecular mechanisms for both intrinsic and | ||
+ | transferable resistance to colistin remain largely unknown. Here, we aim to | ||
+ | address this gap in the knowledge of these proteins. Structural and functional | ||
+ | analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity that | ||
+ | is required for the entry of the lipid substrate, phosphatidylethanolamine | ||
+ | (PE). The in vitro and in vivo data together have allowed us to visualize the | ||
+ | similarities in catalytic activity shared by EptA and MCR-1 and -2. The | ||
+ | expression of either EptA or MCR-1 or -2 is shown to remodel the surface of | ||
+ | enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella | ||
+ | pneumoniae, etc.), rendering them resistant to colistin. The parallels in the | ||
+ | PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a | ||
+ | comprehensive understanding of both intrinsic and transferable colistin | ||
+ | resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two | ||
+ | domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase) | ||
+ | are not functionally exchangeable. Taken together, the results represent a | ||
+ | common mechanism for intrinsic and transferable PEA resistance to polymyxin, a | ||
+ | last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA | ||
+ | and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to | ||
+ | colistin, a final resort against carbapenem-resistant pathogens. Structural and | ||
+ | functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid | ||
+ | substrate-recognizing cavities, which explains intrinsic and transferable | ||
+ | colistin resistance in gut bacteria. A similar mechanism is proposed for the | ||
+ | catalytic activities of EptA and MCR-1 and -2. Together, they constitute a | ||
+ | common mechanism for intrinsic and transferable polymyxin | ||
+ | resistance.","container-title":"mBio","DOI":"10.1128/mBio.02317-17","issue":"2","note":"publisher: | ||
+ | American Society for | ||
+ | Microbiology","page":"e02317-17","source":"journals.asm.org | ||
+ | (Atypon)","title":"An Evolutionarily Conserved Mechanism | ||
+ | for Intrinsic and Transferable Polymyxin Resistance","URL":"https://journals.asm.org/doi/full/10.1128/mBio.02317-17","volume":"9","author":[{"family":"Xu","given":"Yongchang"},{"family":"Wei","given":"Wenhui"},{"family":"Lei","given":"Sheng"},{"family":"Lin","given":"Jingxia"},{"family":"Srinivas","given":"Swaminath"},{"family":"Feng","given":"Youjun"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2018",4,10]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>15</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Xu et al., 2018). This makes the | ||
+ | bacteria resistant to polymyxins because they can no longer have the previously | ||
+ | mentioned electrostatic interactions and thus cannot bind to the modified lipid | ||
+ | A core</span><!--[if supportFields]><span lang=EN style='font-size:12.0pt; | ||
+ | line-height:115%;font-family:"Times New Roman",serif;mso-fareast-font-family: | ||
+ | "Times New Roman"'><span style='mso-element:field-begin'></span> ADDIN | ||
+ | ZOTERO_ITEM CSL_CITATION | ||
+ | {"citationID":"Ev7M9sq2","properties":{"formattedCitation":"\\super | ||
+ | 15\\nosupersub{}","plainCitation":"15","noteIndex":0},"citationItems":[{"id":610,"uris":["http://zotero.org/users/local/DWdd4k1w/items/4G5T5MW8"],"itemData":{"id":610,"type":"article-journal","abstract":"Polymyxins, | ||
+ | a family of cationic antimicrobial cyclic peptides, act as a last line of | ||
+ | defense against severe infections by Gram-negative pathogens with carbapenem | ||
+ | resistance. In addition to the intrinsic resistance to polymyxin E (colistin) | ||
+ | conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance | ||
+ | gene mcr-1 has been disseminated globally since the first discovery in Southern | ||
+ | China, in late 2015. However, the molecular mechanisms for both intrinsic and | ||
+ | transferable resistance to colistin remain largely unknown. Here, we aim to | ||
+ | address this gap in the knowledge of these proteins. Structural and functional | ||
+ | analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity | ||
+ | that is required for the entry of the lipid substrate, phosphatidylethanolamine | ||
+ | (PE). The in vitro and in vivo data together have allowed us to visualize the | ||
+ | similarities in catalytic activity shared by EptA and MCR-1 and -2. The | ||
+ | expression of either EptA or MCR-1 or -2 is shown to remodel the surface of | ||
+ | enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella | ||
+ | pneumoniae, etc.), rendering them resistant to colistin. The parallels in the | ||
+ | PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a | ||
+ | comprehensive understanding of both intrinsic and transferable colistin | ||
+ | resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two | ||
+ | domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase) | ||
+ | are not functionally exchangeable. Taken together, the results represent a | ||
+ | common mechanism for intrinsic and transferable PEA resistance to polymyxin, a | ||
+ | last-resort antibiotic against multidrug-resistant pathogens.\nIMPORTANCE EptA | ||
+ | and MCR-1 and -2 remodel the outer membrane, rendering bacteria resistant to | ||
+ | colistin, a final resort against carbapenem-resistant pathogens. Structural and | ||
+ | functional analyses of EptA and MCR-1 and -2 reveal parallel PE lipid | ||
+ | substrate-recognizing cavities, which explains intrinsic and transferable | ||
+ | colistin resistance in gut bacteria. A similar mechanism is proposed for the | ||
+ | catalytic activities of EptA and MCR-1 and -2. Together, they constitute a | ||
+ | common mechanism for intrinsic and transferable polymyxin | ||
+ | resistance.","container-title":"mBio","DOI":"10.1128/mBio.02317-17","issue":"2","note":"publisher: | ||
+ | American Society for | ||
+ | Microbiology","page":"e02317-17","source":"journals.asm.org | ||
+ | (Atypon)","title":"An Evolutionarily Conserved Mechanism | ||
+ | for Intrinsic and Transferable Polymyxin Resistance","URL":"https://journals.asm.org/doi/full/10.1128/mBio.02317-17","volume":"9","author":[{"family":"Xu","given":"Yongchang"},{"family":"Wei","given":"Wenhui"},{"family":"Lei","given":"Sheng"},{"family":"Lin","given":"Jingxia"},{"family":"Srinivas","given":"Swaminath"},{"family":"Feng","given":"Youjun"}],"accessed":{"date-parts":[["2023",2,1]]},"issued":{"date-parts":[["2018",4,10]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} | ||
+ | <span style='mso-element:field-separator'></span></span><![endif]--><sup><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif'>15</span></sup><!--[if supportFields]><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><span style='mso-element:field-end'></span></span><![endif]--><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'> (Xu et al., 2018). With polymyxin | ||
+ | resistance becoming a bigger problem, more research on <span class=SpellE>PbgA</span> | ||
+ | will be beneficial for future antibiotic discovery.<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"; | ||
+ | mso-no-proof:yes'><!--[if gte vml 1]><v:shape id="image2.png" o:spid="_x0000_i1025" | ||
+ | type="#_x0000_t75" style='width:468pt;height:134pt;visibility:visible; | ||
+ | mso-wrap-style:square'><v:imagedata src="Wiki%20Draft%20(1)_files/image019.png" o:title=""/></v:shape><![endif]--><![if !vml]><img border=0 width=624 height=179 | ||
+ | src="Wiki%20Draft%20(1)_files/image020.gif" v:shapes="image2.png"><![endif]></span><span | ||
+ | lang=EN style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>Figure X: </span>'''<span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>The enzyme <span class=SpellE>EptA</span> | ||
+ | modifies LPS and reduces the negative charge of lipid A; therefore, prevents | ||
+ | colistin from binding and makes bacteria resistant to the antibiotic.<o:p></o:p></span><p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span>'''<p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span lang=EN | ||
+ | style='font-size:12.0pt;line-height:115%;font-family:"Times New Roman",serif; | ||
+ | mso-fareast-font-family:"Times New Roman"'>Conclusion:<o:p></o:p></span>'''<p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'>Antibiotic | ||
+ | resistance is a growing concern today and for our future. Gram-negative | ||
+ | bacteria have been particularly associated with antibiotic resistance due to the | ||
+ | presence of LPS in their cell wall, <span class=GramE>acting<span | ||
+ | style='mso-spacerun:yes'> </span>as</span> a protective barrier against drugs. | ||
+ | The ability of these bacteria to rapidly evolve and develop resistance to | ||
+ | antibiotics has made it an ongoing challenge for scientists to find new ways to | ||
+ | combat these infections. Understanding the pathways in which LPS is synthesized | ||
+ | and regulated demonstrates importance pertaining to antibiotic drug targeting. <span | ||
+ | class=SpellE>Clairfeullie</span> et al. contribute to this research through | ||
+ | characterizing <span class=SpellE>PbgA</span> and demonstrating how | ||
+ | manipulation of this protein could possibly be utilized in the lowering of LPS | ||
+ | levels and subsequently virulence by <i style='mso-bidi-font-style:normal'>E. | ||
+ | coli''.<o:p></o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span><p class=MsoNormal><span lang=EN style='font-size:12.0pt;line-height:115%; | ||
+ | font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p> </o:p></span></div></body></html> | ||