Article Published: 18 May 2020

Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody

Dora Pinto, Young-Jun Park, Martina Beltramello, Alexandra C. Walls, M. Alejandra Tortorici, Siro Bianchi, Stefano Jaconi, Katja Culap, Fabrizia Zatta, Anna De Marco, Alessia Peter, Barbara Guarino, Roberto Spreafico, Elisabetta Cameroni, James Brett Case, Rita E. Chen, Colin Havenar-Daughton, Gyorgy Snell, Amalio Telenti, Herbert W. Virgin, Antonio Lanzavecchia, Michael S. Diamond, Katja Fink, David Veesler 🖂 & Davide Corti 🖂

Nature 583, 290–295(2020) Cite this article

203k Accesses | 238 Citations | 2601 Altmetric | Metrics

Group 3

TA: Agata Kieliszek Michael D'Ercole, Onela Esho, Jasmine Leung, Meet Patel & Amandeep Nagi

Lab background

- Vir Biotechnology Inc.
 - Humabs BioMed SA in Switzerland¹

Image from Vir Biotechnology, 2021.

- Senior Pl's:
 - **David Veesler**, PhD., Associate Professor of Biochemistry at the University of Washington School of Medicine.
 - Davide Corti, PhD., Senior Vice President of Antibody Research at Vir.

Monoclonal antibody (mAb) candidates for SARS-CoV-2

COVID-19	Platform	Pre-clinical	Phase 1	Phase 2	Phase 3
VIR-7831 (Early treatment – ambulatory)	Antibody				
VIR-7831 (Late treatment – hospitalized)	Antibody				
VIR-7831 (Prophylaxis)	Antibody				
VIR-7832	Antibody				

Outline of the results

Identifying a SARS-CoV-2 cross-neutralizing mAb

- Evaluated 25 mAbs for cross-reactivity to SARS-CoV-2¹
- 19 mAbs identified in the 2004 screen¹
- 6 recombinant lgG-LS antibodies¹

mAb	VH (per cent identity)	HCDR3 sequence	VL (per cent identity)	SARS-CoV	SARS-CoV-2	Binding
S110	VH3-30 (96.88)	AKDRFQFARSWYGDYFDY	VK2-30 (96.60)	+	+	RBD and non-RBD
S124	VH2-26 (98.28)	ARINTAAYDYDSTTFDI	VK1-39 (98.57)	+	+	RBD
S109	VH3-23 (93.75)	ARLESATQPLGYYFYGMDV	VL3-25 (97.85)	+	-	RBD
S111	VH3-30 (95.14)	ARDIRHLIVVVSDMDV	VK2-30 (98.30)	+	-	RBD
S127	VH3-30 (96.53)	AKDLFGYCRSTSCESLDD	VK1-9 (98.92)	+	-	RBD
S215	VH3-30 (90.28))	ARETRHYSHGLNWFDP	VK3-15 (98.92)	+	-	RBD
S217	VH3-49 (95.58)	SWIHRIVS	VK1-33 (98.21)	+	-	RBD
S218	VH3-30 (93.40)	ARDVKGHIVVMTSLDY	VK2-30 (97.62)	+	-	RBD
S219	VH1-58(92.01)	AAEMATIQNYYYYGMDV	VK1-39 (95.34)	+	-	RBD
S222	VH1-2 (91.67)	ARGDVPVGTGWVFDF	VK1-39 (92.47)	+	-	RBD
S223	VH3-30 (95.14)	ATVSVEGYTSGWYLGTLDF	VK3-15 (98.21)	+	-	RBD
S224	VH1-18 (90.97)	ARQSHSTRGGWHFSP	VK1-39 (95.70)	+	-	RBD
S225	VH3-9 (96.18)	AKDISLVFWSVNPPRNGMDV	VK1-39 (98.57)	+	-	RBD
S226	VH3-30 (89.61)	ARDSSWQSTGWPINWFDR	VK3-11 (96.11)	+	-	RBD
S227	VH3-23 (95.14)	ASPLRNYGDLLY	VK1-5 (96.06)	+	-	RBD
S228	VH3-30 (96.53)	ARDLQMRVVVVSNFDY	VK2D-30 (99.32)	+	-	RBD
S230	VH3-30 (90.97)	VTQRDNSRDYFPHYFHDMDV	VK2-30 (97.62)	+	-	RBD
S231	VH3-30 (90.62)	ARDDNLDRHWPLRLGGY	VK2-30 (94.56)	+	-	RBD
S237	VH3-21 (96.53)	ARGFERYYFDS	VL1-44 (96.84)	+	-	RBD
S309	VH1-18 (97.22)	ARDYTRGAWFGESLIGGFDN	VK3-20 (97.52)	+	+	RBD
S315	VH3-7 (97.92)	ARDLWWNDQAHYYGMDV	VL3-25 (97.57)	+	+	RBD
S303	VH3-23 (90.28)	ARERDDIFPMGLNAFDI	VK1-5 (97.49)	+	+	RBD
S304	VH3-13 (97.89)	ARGDSSGYYYYFDY	VK1-39 (93.55)	+	+	RBD
S306	VH1-18 (95.49)	ASDYFDSSGYYHSFDY	VK3-11 (98.92)	+	+	Non-RBD
S310	VH1-69 (92.71)	ATRTYDSSGYRPYYYGLDV	VL2-23 (97.57)	+	+	Non-RBD

Enzyme-linked immunosorbent assay (ELISA)

- SARS-CoV RBD¹
- SARS-CoV-2 RBD¹
- SARS-CoV S glycoprotein¹
- SARS-CoV-2 S glycoprotein¹
- HCoV-OC43 S glycoprotein¹
- MERS-CoV S glycoprotein¹

Indirect ELISA

Image created using BioRender

ELISA results

- None of the mAbs bound to the MERS-CoV or HCoV-OC43 S glycoprotein¹
- Four mAbs bound to the RBD of both SARS-CoV and SARS-CoV-2¹
 - \$309
 - \$304
 - S303
 - S315

Biolayer interferometry

Biolayer interferometry results

- S309, S303, S304 and S315 bound to the RBD of SARS-CoV and SARS-CoV-2 with nano- to sub-picomolar affinities¹
- **S309** bound to the RBD of **SARS-CoV-2** with the highest affinity¹

mAb	KD (SARS-CoV)	KD (SARS-CoV-2)
S309	<mark>KD <1.0x10⁻¹²</mark> M	<mark>KD <1.0x10⁻¹²M</mark>
S303	KD <1.0x10 ⁻¹² M	KD 2.36x10 ⁻⁸ M
S304	KD 8.69x10 ⁻¹⁰ M	KD 4.58x10 ⁻⁹ M
S315	KD <1.0x10 ⁻¹² M	KD 8.11x10 ⁻¹⁰ M

Neutralization assay results

• **S315 & S304**

• Weakly neutralized both SARS-CoV-MLV and SARS-CoV-2-MLV¹

• S303

• Neutralized SARS-CoV-MLV but not SARS-CoV-2-MLV¹

• **S309**

• Potently neutralized both SARS-CoV-MLV and SARS-CoV-2-MLV¹

Structural basis of S309 cross-neutralization

- Characterized the Complex between:
 - S309 Fab fragment¹
 - Ectodomain trimer of SARS-CoV-2
 S glycoprotein¹
- Cryo-electron microscopy (Cryo-EM)
 - Structural molecular technique²

Cryo-EM structures of the complex

- A: Partially open state¹
- B: Closed state¹
- S309 recognizes an epitope on the SARS-CoV-2 S^{B 1}
- Stoichiometric binding of Fab to the S glycoprotein trimer ¹

Close-up view of the S309 epitope

- D: Core fucose & glycan at N343¹
 - Core fucosylation³
- E: CDRH3 sitting atop the S^B helix¹
 - Antigen recognition and binding⁴
- Both shows selected residues involved in the interactions¹

Highly conserved S309 epitope

- 17 out of 22 residues of the epitope are strictly conserved¹
- Explained S309 cross-reactivity between SARS-CoV-2 & SARS-CoV¹
- S309 could neutralize potentially all SARS-CoV-2 and many other zoonotic sarbecoviruses¹

Mechanism of S309-mediated neutralization of SARS-CoV-2

- Cryo-EM structure of S309 bound to SARS-CoV-2 S glycoprotein, with SARS-CoV-2 S^B in complex with ACE2¹
- Fab engages an epitope distinct from the receptor-binding motif¹
- Fab would not clash with ACE2 upon binding to S glycoprotein¹

S309 engagement with SARS-CoV-2

Image from Pinto et al., 2020

Results confirm the absence of competition between S309 and ACE2 for binding to the SARS-CoV-2 S glycoprotein¹.

S309-mediated neutralization

• Similar potencies for IgG and Fab¹

- Other IgG-specific bivalent mechanisms may contribute to the ability of S309 to fully neutralize pseudovirions¹:
 - S-glycoprotein trimer cross-linking
 - Steric hindrance
 - Aggregation of virions

Fc-dependent effector mechanisms

Antibody-dependent cellular cytotoxicity assay

- Efficient S309 and S306 mediated ADCC of SARS-CoV-2 S-glycoprotein-transfected cells¹
- Other mAbs show limited or no activity¹
- Distinct binding orientations or positioning of mAb Fc fragment might be key¹

Further exploring Fc mediated effector function

Target cells transfected with fluorescent labels; phagocytosis determined by **flow cytometry**¹.

Image created by A. Nagi using BioRender, adapted from Weiner et al., 2010.

Antibody-dependent cellular phagocytosis assay

- mAbs S309 and S306 showed the strongest ADCP response¹
- S309 may leverage additional protective mechanisms in *vivo*¹

Image from Pinto et al., 2020

BLI-based epitope binning

BLI-based competition of mAbs; SARS-CoV

• 4 distinct epitopes of the S^B domain of SARS-CoV¹

- I: S110, S230 & S227¹
 II: S315¹
 III: S124¹
 Bridged together by S124
- IV: S309, S109, S303¹

BLI-based competition of mAbs; SARS-CoV-2

 Cross neutralizing mAbs; bind to S^B domain of SARS-CoV and SARS-CoV-2¹

- IV: S309 & S303¹
- **|| & |||**: S304 & S315¹

mAb cocktails enhance SARS-CoV-2 neutralization

- pseudovirus neutralization assays¹
- S309: high neutralization potency¹
- S315: weak neutralization potency¹
- S309 & S315: strongest neutralization potency¹

Critical Appraisals

What the study did well:

- Simple and effective study design
- Showed cross-neutralization ability of \$309

Criticisms:

- Could have used an *in vivo* model to test S309
- More focus on IgG-specific bivalent mechanisms

Future Implications

U.S.: Regeneron Pharmaceuticals

Canada: Eli Lilly and AbCellera Biologics

bamlanivimab injection **700 mg/20 mL** (35 mg/mL)

For Intravenous Infusion Only Must dilute before use Single-Dose Vial: Discard Unused Portion

For use under Emergency Use Authorization (EUA).

Contents Each mill contain E-

tamlarivinat, L-Visióne (J) L-Vistórie Indrictición

nonchydrae (Lâ ng) solar chloride (2.9 ng) socrae (Br colvestriae (B) C.6 ng) act v

nietot.

No preservable.

Vostati Tatel

Bilily and Conter Indenatolis IN 4525 (SA

Conclusion

• S309 Properties

- Ability to neutralize S glycoprotein of SARS-CoV-2
- Shows broad neutralization activity across multiple sarbecoviruses
- Can recruit effector mechanism such as ADCC and ADCP
- Shows increased neutralization in combination with weak neutralizing mAbs
- VIR-7831 & VIR-7832 are S309 based mAbs in clinical trials!

References

- Pinto, D., Park, Y., Beltramello, M., Walls, A. C., Tortorici, M. A., Bianchi, S., . . . Corti, D. (2020). Cross-neutralization of sars-cov-2 by a human monoclonal SARS-CoV antibody. Nature, 583(7815), 290-295. doi:10.1038/s41586-020-2349-y
- 2. Carroni, M., & Saibil, H. R. (2016). Cryo electron microscopy to determine the structure of macromolecular complexes. Methods, 95, 78–85. <u>https://doi.org/10.1016/j.ymeth.2015.11.023</u>
- Fernández-Quintero, M. L., Kraml, J., Georges, G., & Liedl, K. R. (2019). CDR-H3 loop ensemble in solution–conformational selection upon antibody binding. MAbs, 11(6), 1077–1088. <u>https://doi.org/10.1080/19420862.2019.1618676</u>
- Hwang, H., Jeong, H. K., Lee, H. K., Park, G. W., Lee, J. Y., Lee, S. Y., Kang, Y. M., An, H. J., Kang, J. G., Ko, J. H., Kim, J. Y., & Yoo, J. S. (2020). Machine Learning Classifies Core and Outer Fucosylation of N-Glycoproteins Using Mass Spectrometry. Scientific Reports, 10(1), 1–10. <u>https://doi.org/10.1038/s41598-019-57274-1</u>

Image References

Vir Biotechnology. (2021). A new era. VIR. Retrieved February 24, 2021, from https://www.vir.bio/pipeline/

2Bind molecular interactions. (2020, November 19). Biolayer Interferometry: Label-free kinetics without fluidics. Retrieved February 17, 2021, from https://2bind.com/bli/

Berthold. (2020, December 09). Pseudovirus neutralization assays in SARS-CoV-2 research - Berthold Technologies. Retrieved February 17, 2021, from <a href="https://www.berthold.com/en/bioanalytic/solutions-sars-cov-2-covid-19-research/pseudovirus-neutralization-assays-in-sars-cov-2-covid-19-research/pseudovirus-neutralization-assays-in-sars-cov-2-covid-19-research/pseudovirus-neutralization-assays-in-sars-cov-2-research/pseudovirus-neutralization

Cryo-EM Facility. (n.d.). Retrieved February 28, 2021, from https://www.utep.edu/science/chemistry/Facilities/cryo-em-facility.html

Takkar, R. et al. (2020). Cross-competition or epitope binning assays on the Octet HTX system. *ForteBio,* 1-20, <u>https://www.fortebio.com/sites/default/files/en/assets/app-note/cross-competition-or-epitope-binning-assays-on-octet-htx-system.pdf</u>

Presse-France, Agence (Nov. 23, 2020). US Approves Regeneron Antibody Treatment Given to Trump. *IndustryWeek*. <u>https://www.industryweek.com/covid19/article/21148471/us-approves-regeneron-antibody-treatment-given-to-trump</u>

Harris, Richard (Nov. 10, 2020). FDA OKs Eli Lilly COVID-19 Drug, But Supplies Will Be Limited. NPR. <u>https://www.npr.org/sections/health-shots/2020/11/10/933444237/fda-oks-eli-lilly-covid-19-drug-but-supplies-will-be-limited</u>

Weiner, L. M., Surana, R., & Wang, S. (2010). Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Reviews Immunology, 10(5), 317-327.