Diagnostics of SARS-CoV-2

By: Adnan, Syed, Tristen, Leena

Introduction - What is SARS-CoV-2?

- Outbreak originated in China in late 2019
- Disease caused by this virus is called: coronavirus disease 2019 (a.k.a. COVID-19)
- Global pandemic declared March 11, 2020
- Symptoms include:
 - Fever
 - Dry cough
 - Shortness of breath
 - Fatigue
 - Loss of smell and/or taste

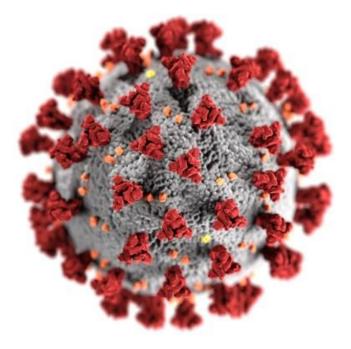
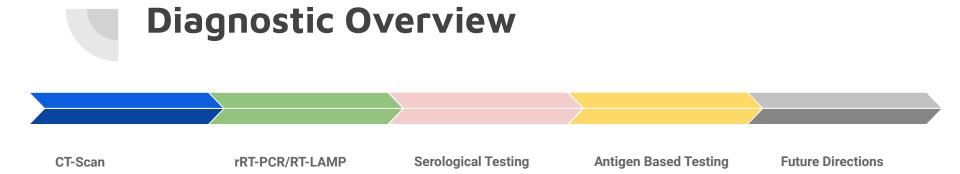
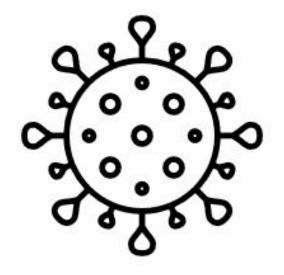



Illustration of SARS-CoV-2. Adapted from Eckert & Higgins, 2020.


Clinical Performance

- Analytical sensitivity: reliably detect minimum amount of target substance within sample (limit of detection)
- Analytical specificity: ability of test to detect only the analyte being measured
- Clinical sensitivity: True positive rate
- Clinical specificity: True negative rate

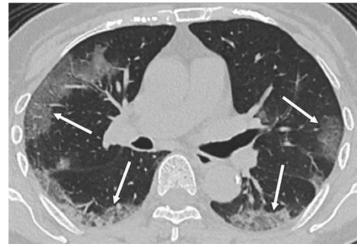
ACRONYMS TO KNOW

RT-PCR: Reverse transcription polymerase chain reaction RT-LAMP: Reverse transcription loop-mediated isothermal amplification ELISA: Enzyme-linked immunoassay LFA: Lateral flow assay CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats AI: Artificial Intelligence

Importance of Diagnostic Testing

✓ COVID-19 +ve
❑ COVID-19 -ve

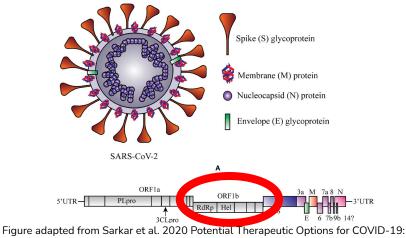
ŴŔŴ ŴŴŴŴŴ


> Epidemiological information for Public Health

Prevent spread of COVID-19

CT-Scans

- Series of X-rays of lungs
- Earliest Diagnostic test
- Lower specificity and sensitivity (even lower)
- Expensive and specialist reliant
- Quick results


Presence of bilateral ground-glass opacities in upper lobe

rRT-PCR

- Initially tested for the presence of SARS-CoV-2 RdRp, N or E genes

 Later narrowed down testing to the RdRp Helicase gene alone due to lower cross-reactivity with other viruses

The New York Times You're Infected With the Coronavirus. But How Infected?

Current Status, Challenges, and Future Perspectives

rRT-PCR

- Samples are retrieved and treated

 Marker DNA sequences complementary to the viral gene are added

- Standard PCR testing begins with updates occurring in real time

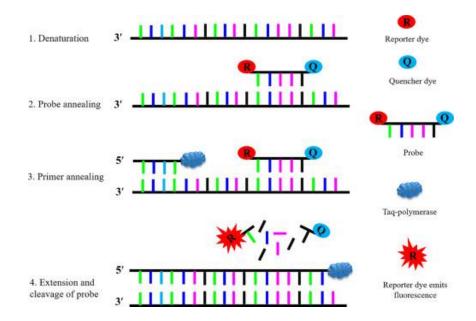


Figure adapted from Roy et al. 2019. Chapter 5 - Small RNA proteome as disease biomarker: An incognito treasure of clinical utility

rRT-PCR

Advantages:

- Little time between sample collection and test results
- No cross-reactivity with other respiratory viruses or other coronavirus strains

Disadvantages:

- Fairly expensive
- Unable to retroactively diagnose COVID-19 infections

Virusª	Viral titer (TCID ₅₀ /ml) ⁶	Cross-reactivity ^c		
		COVID-19-RdRp/Hel	COVID-19-N	RdRp-P2
SARS-CoV	1.0×10^{3}	<u></u>	_	+
MERS-CoV	5.6×10^{3}	555-		
HCoV-OC43	3.2×10^{3}		—	_
HCoV-229E	5.0×10^{2}	—	-	-
HCoV-NL63	3.2×10^{1}	-	-	-
Adenovirus	1.0×10^{2}	—	_	-
hMPV	3.2×10^{2}	_	-	-
IAV (H1N1)	4.2×10^{3}	_	_	_
IAV (H3N2)	5.6×10^{3}		-	_
IBV	3.2×10^{3}		-	_
ICV	5.6×10^{2}		—	—
PIV1	1.0×10^{2}	-	-	-
PIV2	1.0×10^{3}	—	-	-
PIV3	1.0×10^{3}	—	-	-
PIV4	1.0×10^{3}	—	-	
Rhinovirus	7.9×10^{3}		-	-
RSV	1.0×10^{3}	_	_	_

Figure Adapted from Chan et al. 2020. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay

RT-LAMP

One-step nucleic acid amplification method

Advantages:

- Faster and less expensive alternative to RT-PCR
- High sensitivity and specificity
- Special training or equipment not required

Disadvantages:

 Designing compatible LAMP primers to target sequence

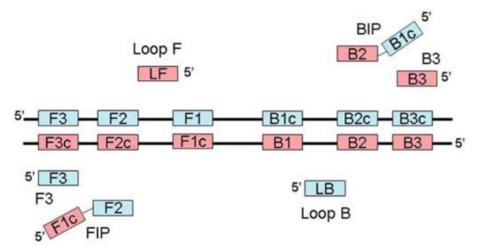
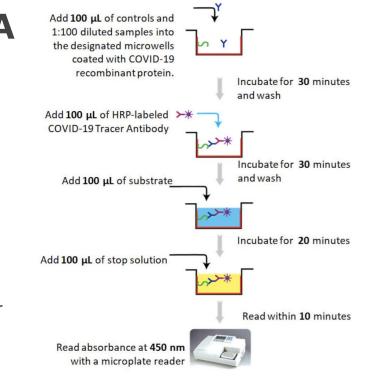
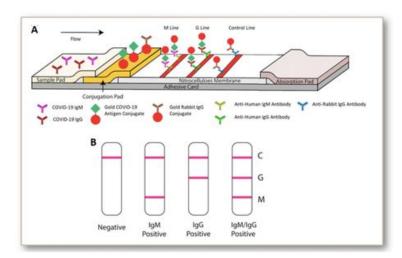



Figure Adapted from Mori & Notomi 2009. Schematic illustrating the loop-mediated isothermal amplification (LAMP) primers

Serological Testing: ELISA

ELISA:

- High specificity and sensitivity after seroconversion
- Contained purified SARS-COV-2 protein to bind human antibody
- Indirect: Presence of secondary antibody
- Added Substrate and fluorescence indicator
- Retrospective Testing

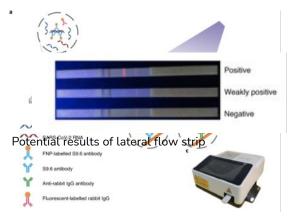


COVID-19 ELISA test Protocol

Serological Testing: Rapid Lateral Flow Assay

Rapid Lateral Flow Assay:

- Use of Anti-Human IgG and IgM to capture potential SARS-COV-2 specific antibodies
- Easy to read results based on coloured bands
- Quick Processing Time
- Point of Care Testing
- Inexpensive
- Lowered Specificity and Sensitivity



Steps in COVID-19 specific Lateral Flow Assay

Antigen Based Testing

Lateral Flow Assay:

- Adapted technique
- Use of DNA probes
- Easy to read results based on fluorescence cut off value

Steps in COVID-19 specific antigen Lateral Flow fluorescence immunoassay

Sandwich ELISA:

- Use of lab made Capture, primary and secondary antibody

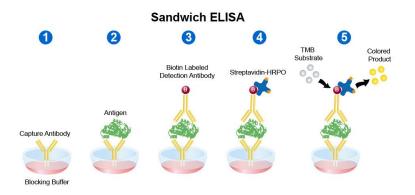
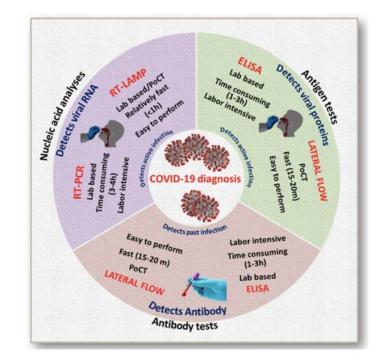
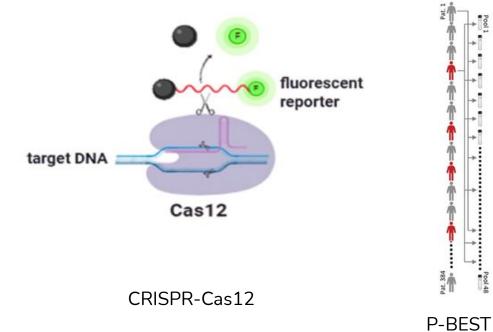




Figure adapted from Leinco Technologies inc. Sandwich ELISA protocol

Gold standard: Overview of Current Methods

Novel methods summary

Artificial Intelligence

(Jolany Vangah et al., 2020; Shental et al., 2020)

Crispr-Based Detection

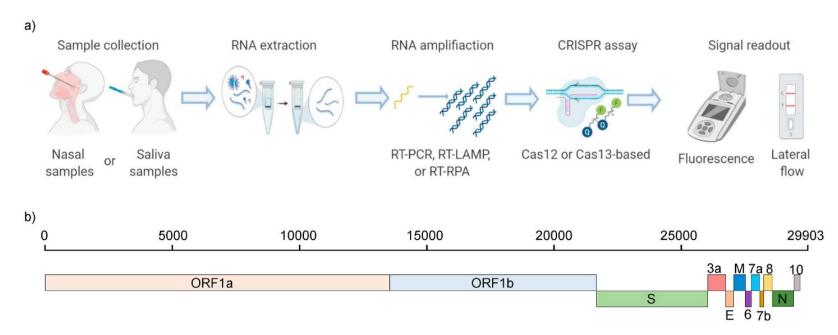
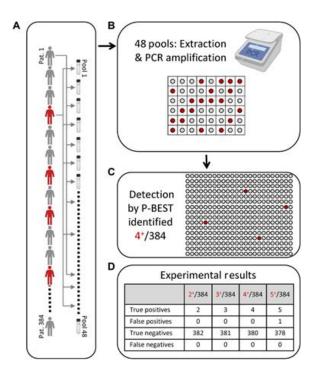


Fig. 1. a) Workflow of CRISPR-based SARS-CoV-2 diagnostic schemes from sample to answer. b) Schematic presentation of the SARS-CoV-2 genome organization (Kim et al., 2020a).

(Broughton et al., 2020)

Overview of Paper CRISPR-Cas12-based detection of SARS-CoV-2 Broughton et al.

	SARS-CoV-2 DETECTR, RT-LAMP/Cas12	CDC SARS-CoV-2 qRT–PCR
Target	E gene and N gene ^a	N gene (three amplicons, N1, N2 and N3)
Sample control	RNase P	RNase P
LoD	10 copies per μl input	1 copy per μ l input ^b and 3.2 copies per μ l input ^c
Assay reaction time (approximate)	30–40 min	120 min
Assay sample-to-result time (approximate)	45 min (with manual RNA extraction)	4 h (including RNA extraction)
Assay results	Qualitative	Quantitative
Assay components	RT–LAMP (62 °C, 20–30 min) Cas12 (37 °C, 10 min) Lateral flow strip (RT, 2 min; no additional time if using fluorescence readout)	UDG digestion (25 °C, 2 min), reverse transcription (50 °C, 15 min), denature (95 °C, 2 min) amplification, (95 °C, 3 s; 55 °C 30 s; 45 cycles)
Bulky instrumentation required	No	Yes
US FDA EUA approval	Pending clinical validation	Yes


(Broughton et al., 2020)

Future Direction Point of Care Testing

Point-of-Care Testing

Mass Screening: P-BEST

- Single step group testing method to test multiple people for SARS-CoV-2
- Much faster rate than testing individually
- Each individual's sample is a part of multiple groups in a combinatorial grouping method
 - Helps determine the specific positive individual from a positive group test result without the need for additional testing

AI-Based Testing

- Machine learning by previous RT-PCR verified CT scans
- Quick diagnosis
- Enhances physician diagnosis
- Improves sensitivity
- Predicts progression of illness
- Still in infancy

QUESTIONS?

References

- Broughton, J. P., Deng, X., Yu, G., Fasching, C. L., Servellita, V., Singh, J., ... Chiu, C. Y. (2020). CRISPR–Cas12-based detection of SARS-CoV-2. Nature Biotechnology, 38(7), 870–874. https://doi.org/10.1038/s41587-020-0513-4
- Chan, J. F.-W., Yip, C. C.-Y., To, K. K.-W., Tang, T. H.-C., Wong, S. C.-Y., Leung, K.-H., ... Yuen, K.-Y. (2020). Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated & lt:em>:In Vitro and with Clinical Specimens. *Journal of Clinical Microbiology*, 58(5), e00310-20. https://doi.org/10.1128/JCM.00310-20
- Chau, C. H., Strope, J. D., & Figg, W. D. (2020). COVID-19 Clinical Diagnostics and Testing Technology. The Journal of Human Pharmacology and Drug Therapy, 40(8), 857-868.
- Eckert, A., & Higgins, D. (2020). [Illustration of SARS-CoV-2] [Photograph] CDC. https://phil.cdc.gov/Details.aspx?pid=23312
- Lamb, L. E., Bartolone, S. N., Ward, E., & Chancellor, M. B. (2020). Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. *PLoS ONE*, *15*(6), 1–15.
- Mori, Y., & Notomi, T. (2009). Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother, 15 (2), 62–69.
- Roy, J., Jain, N., Singh, G., Das, B., & Mallick, B. (2019). Chapter 5 Small RNA proteome as disease biomarker: An incognito treasure of clinical utility. In B. Mallick (Ed.), AGO-Driven Non-Coding RNAs (pp. 101–136). Academic Press. https://doi.org/10.1016/B978-0-12-815669-8.00005-1
- Sheposh, R. (2021). Coronavirus Disease 2019 (COVID-19). Salem Press Encyclopedia of Health.
- Shental, N., Levy, S., Wuvshet, V., Skorniakov, S., Shalem, B., Ottolenghi, A., ... Hertz, T. (2020). Efficient high-throughput SARS-CoV-2 testing to detect asymptomatic carriers. Science Advances, 6(37), 5961–5972. https://doi.org/10.1126/sciadv.abc5961

Schilling, M. (2015). The economic benefits of point-of-care testing. Abbott. https://www.pointofcare.abbott/shared/static-assets/other/2697.1_HHE2015ArticleMartinSchilling.pdf

ThermoFisher (2020). Basic Principles of RT-qPCR. https://www.thermofisher.com/ca/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/spotlight-articles/basic-principles-rt-gpcr.ht ml

World Health Organization. (2021). WHO coronavirus disease (COVID-19) dashboard. Retrieved January 27, 2020 from https://covid19.who.int/

Shental, N., Levy, S., Wuvshet, V., Skorniakov, S., Shalem, B., Ottolenghi, A., ... Hertz, T. (2020). Efficient high-throughput SARS-CoV-2 testing to detect asymptomatic carriers. Science Advances, 6(37), 5961–5972. https://doi.org/10.1126/sciadv.abc5961