Presentation 2: "A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein"

Group 3: Bisman Singh, Carter Nattrass, Jessica Xing, Lamisa Syed, Luke Cheon, & Matthew Fernandes

Objective of the Kim et al. Paper

Article Open Access Published: 12 January 2021

A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein

Cheolmin Kim, Dong-Kyun Ryu, ... Soo-Young Lee 🗠 🕇 Show authors

· Show authors

Nature Communications 12, Article number: 288 (2021) Cite this article

31k Accesses 51 Citations 188 Altmetric Metrics

METHODS

Methods Overview

- 1. Peripheral Blood Mononuclear Cells (PBMC) Isolation
- 2. Phage Display & Biopanning
- 3. Plaque reduction neutralization test (PRNT)
- 4. Biolayer Interferometry (BLI)
- 5. X-ray Crystallography
- 6. Animal Studies

Phage Display and Library construction

- cDNA cloned to phagemid vector for library construction.
- ER2738 competent cells transformed with scFVs cDNA library, cultured with VCSM13 helper phage cells.
- Phages displaying scFvs harvested.

Image Source : Phage Display Technology - Creative Biolabs (Updated Version), 2020

Biopanning to find scFvs binding to SARS-CoV-2

- Screen for SARS-CoV-2 RBD-binding scFv displayed on phage.
- SARS-CoV-2 was coated with magnetic beads.
- Magnetic field helped SARS-CoV-2 RBD bound phages to be retained.
- Phage-ELISA was performed to identify scFvs binding to the RBD of SARS-CoV-2

Image Source : Phage Display Technology - Creative Biolabs (Updated Version), 2020

Preparation of scFv-Fc and full length lgG

- scFvs cloned into constant fragment fusion vector region.
- Synthesized DNAs of heavy and light chain inserted to MarEx vectors for full length IgG expression.
- scFv-Fc and full length recombinant IgG were purified using affinity chromatography.

RESULTS

Screening of CT-P59 to Evaluate Neutralization Potency

- RBD-binding single-chain variable fragments isolated via recombinant SARS-CoV-2 RBD
- Evaluate neutralization potency of CT-P59 against
 - SARS-CoV-2
 - SARS-CoV-2 D614G variants

Competitive Binding of CT-P59 to RBD-ACE2

- CT-P59 significantly inhibits the viral replication of a Korean SARS-CoV-2 clinical isolate
 - IC50 = 8.4 ng/ml
- CT-P59 reduces the replication of the D614G variant
 - IC50 of 5.7 ng/ml

• CT-P59 completely inhibits the binding of RBD-ACE2.

Evaluating CT-P59 Interactions with SARS-Co RBD

• CT-P59 specifically binds to SARS-CoV-2.

- CT-P59 has a high affinity for SARS-CoV-2 RBD.
 - KD= 27 pM

- SARS-CoV-2 RBD mutations might alter the binding affinity of the virus for ACE2.
 - mutations V367F, W436R, and D364Y

Structural Analysis of CT-P59 Fab/RBD Protein Complex

 X-ray structure of CT-P59 Fab/RBD solved at 2.7Å

• CT-P59 Fab binds SARS-CoV-2 RBM

CT-P59 Fab/RBD Complex Epitope Binding

- Compared to 12 other mAb against SARS-CoV-2
- Unique binding to RBD epitope residues

 Red = RBD residues that bind to ACE2

Complementarity-Determining Regions (CDR)

- 16 residues from the **heavy chain** binds to 19 residues on the **RBD**
- CDR H3 forms:
 - Beta hairpin
 - 8 H-bonds

(Kim et al., 2021)

Structural Comparison: CT-P59 Fab/RBD vs. ACE2/RBD

- Only binds to the "up" conformation
- CT-P59 binds to 12/21 ACE2 binding residues on the RBD
- Avoids binding to RBD mutants at 3 positions, notably D364Y

(Kim et al., 2021)

Type of Negative Controls

Isotype Control

- Very similar properties
- Determines extent of non-specific binding

Vehicle-treated Control

- Administers only the vehicle
- Determines effect of

vehicle ("Isotype control," n.d.; Johnson et al., 2002)

Dosage-dependent Viral Replication Inhibition

(Kim et a

Ferret Model

- Cough, rhinorrhea, activity level
 - Control
 - Human IgG isotype control
 - Experimental
 - 18 mg/kg Remdesivir daily
 - 3 and 30 mg/kg CT-P59
 - Complete inhibition of viral replication
 - Similar or better therapeutic efficacy than Remdesivir

Significant Reduction in Viral Titer

С

Golden Syrian hamster model

Significant reduction or elimination of viral titer depending on dosage

Rhesus monkey model

Upper Respiratory Tract

Control

45mg/kg

90mg/kg

(Kim et al.,

. 2021

Days post infection (dpi

Antibody-Dependent Enhancement (ADE)

(Lee et al., 2020)

In vitro ADE assay

CRITICAL APPRAISAL, NEXT STEPS, AND CONCLUSION

Critical Appraisal of the Kim et al. Paper

Pros	Cons
 In vivo and in vitro testing 	 CT-P59 does not recognize the "down" conformation of the RBD
 Illustrated the effectiveness of CT-P59 	• Antibodies used aren't explained in ADE
	 In vivo animal models did not reflect clinical symptoms of severe COVID-19 in patients

CT-P59 is Currently Being Tested in Clinical Trials and its Broad Neutralizing Capabilities of SARS-CoV2 can be Researched

Study Description

Go to 🔻

Brief Summary:

This is a Phase 2/3 study to assess the efficacy about therapeutic effect of CT-P59 to the mild to moderate SARS-CoV-2 infected patients and safety during after study drug injection.

Condition or disease ()	Intervention/treatment 1	Phase ()
SARS-CoV-2 Infection	Biological: CT-P59/Placebo	Phase 2
		Phase 3

Detailed Description:

CT-P59 is a monoclonal antibody targeted against SARS-CoV-2 spike RBD as a treatment for SARS CoV 2 infection. CT-P59 is currently being developed by the Sponsor as a potential treatment for SARS-CoV-2 infection. In this study, safety, tolerability and virology of CT-P59 will be evaluated in patient with mild symptoms of SARS-CoV-2 Infection.

Phase II and III Clinical Trials

Broadly Neutralizing Antibody for SARS-CoV2

(Kim et al., 2021), (NIH, n.d.)

Conclusion

Main Takeaways from the Kim et al. Paper:

- CT-P59 is able to competitively bind and inhibit RBD-ACE2 interactions
- CT-P59 Fab blocked areas of the ACE2 binding sites within the SARS-CoV-2 RBD.
- Virus titration and quantification showed CT-P59 completely inhibits viral replication, reducing viral RNA copy number and viral titer faster than remdesivir.
- ADE assay showed no evidence of CT-P59-mediated increase in viral infections via ADE

References

Biorender. (2021). Biorender Templates. https://app.biorender.com/

Gapper, L. W., Copestake, D. E. J., Otter, D. E., & Indyk, H. E. (2007). Analysis of bovine immunoglobulin G in milk, colostrum and dietary supplements: a review. *Analytical and Bioanalytical Chemistry*, 389(1), 93–109. <u>https://doi.org/10.1007/s00216-007-1391-z</u>
Kim, C., Ryu, D. K., Lee, J., Kim, Y. I., Seo, J. M., Kim, Y. G., ... & Lee, S. Y. (2021). A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nature communications, 12(1), 1-10.

NIH. (n.d.). To Evaluate the Safety and Efficacy of CT-P59 in Patients With Mild to Moderate Syptoms of Severe Acute Respiratory Syndrome COVID-19. ClinicalTrials.gov.

https://clinicaltrials.gov/ct2/show/NCT04602000

Phage Display Technology - Creative Biolabs (Updated Version). (2020, February 22). [Video]. YouTube.

https://www.youtube.com/watch?v=mczJ3ZbpVW8

Thank You!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik