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Ultrafast Method for the Analysis of Fluorescence
Lifetime Imaging Microscopy Data Based on the

Laguerre Expansion Technique
Javier A. Jo, Member, IEEE, Qiyin Fang, Member, IEEE, and Laura Marcu

Abstract—We report a new deconvolution method for fluores-
cence lifetime imaging microscopy (FLIM) based on the Laguerre
expansion technique. The performance of this method was tested
on synthetic and real FLIM images. The following interesting prop-
erties of this technique were demonstrated. 1) The fluorescence in-
tensity decay can be estimated simultaneously for all pixels, without
a priori assumption of the decay functional form. 2) The compu-
tation speed is extremely fast, performing at least two orders of
magnitude faster than current algorithms. 3) The estimated maps
of Laguerre expansion coefficients provide a new domain for rep-
resenting FLIM information. 4) The number of images required
for the analysis is relatively small, allowing reduction of the acqui-
sition time. These findings indicate that the developed Laguerre
expansion technique for FLIM analysis represents a robust and
extremely fast deconvolution method that enables practical appli-
cations of FLIM in medicine, biology, biochemistry, and chemistry.

Index Terms—Discrete Laguerre basis expansion, fluorescence
decay deconvolution method, fluorescence lifetime imaging mi-
croscopy (FLIM), global analysis.

I. INTRODUCTION

F LUORESCENCE lifetime imaging microscopy (FLIM)
is based on the measurement of the time that a fluo-

rescence system spends in the excited state before return-
ing to the ground state after light excitation. Thus, lifetime
measurement provides information about the localization of a
specific fluorophore and its surrounding environment [1]–[4].
This functionality of FLIM has been exploited to study cell
metabolism, including measurements of pH [5]–[7], Ca+ con-
centration [8]–[10], NADH [11], [12], oxygen concentration
[13], [14], and fluorescence resonant energy transfer (FRET)
[15], [16]. Moreover, since fluorescence lifetime is derived
from relative intensity values, it provides useful information
about biological tissue composition despite the heterogeneity
and strong optical scattering. Thus, FLIM also represents a

Manuscript received January 21, 2005; revised August 1, 2005. This work
was supported by the National Institute of Health under Grant R01 HL 67377
and by The Whitaker Foundation.

J. A. Jo is with the Biophotonics Research and Technology Development,
Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
USA (e-mail: joj@cshs.org).

Q. Fang is with the Department of Engineering Physics, McMaster University,
Hamilton, ON L8S4L8, Canada (e-mail: gfang@mcmaster.ca).

L. Marcu is with Biophotonics Research and Technology Development,
Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
90048 USA and the Departments of Electrical and Biomedical Engineering,
University of Southern California, Los Angeles, CA 90048 USA (e-mail:
lmarcu@bmsrs.usc.edu).

Digital Object Identifier 10.1109/JSTQE.2005.857685

powerful functional imaging modality for clinical applications
[17]–[20].

FLIM can be performed either in the frequency domain or in
the time domain [21], [22]. Although frequency-domain FLIM
requires simpler experimental setups, it has limited temporal
dynamic range and does not allow the analysis of complex de-
cays. Time-domain FLIM, on the other hand, requires more
complex instrumentation, but is often more suitable for study-
ing such decays. Time-domain FLIM data is usually obtained
by acquiring a series of time-gated fluorescence intensity maps
at increasing delays after excitation by ultrashort light pulses.
The temporal series of relative fluorescence intensity values for
each pixel in the field of view conforms the measured fluores-
cence decay curve. Mathematically, the measured fluorescence
intensity decay is given by the convolution of the intrinsic flu-
orescence decay or impulse response function (IRF) with the
excitation light pulse. To estimate the fluorescence IRF at a
given pixel, the excitation light pulse must be deconvolved from
the measured fluorescence intensity decay.

The most commonly used deconvolution technique is the non-
linear least-square iterative reconvolution method [23], [24].
This method applies a least-squares minimization algorithm to
compute the parameters of a multiexponential model of the flu-
orescence decay. The reconvolution method, however, involves
the successive calculation of a large number of convolutions
and is very time consuming. This issue represents a limiting
factor, particularly in the context of FLIM, where the analysis
of a single image requires deconvolution at every pixel of the
image [21]. Furthermore, iterative methods require the acqui-
sition of a considerable number of data samples, which would
also increase the acquisition time.

An alternative noniterative rapid lifetime determination tech-
nique (RLD) for mono- and biexponential decays [25] has been
extensively used in many FLIM applications. RLD, however,
requires the assumption of a negligibly short excitation pulse
and is restricted to a reduced number of data points, lead-
ing to imprecise results [26]. More recently, several other al-
ternative methods for FLIM analysis have been reported. Lee
and French et al. [27] proposed the use of a stretch exponen-
tial function to fit the fluorescence decays from tissue FLIM
images. Although the stretch exponential method provides a
good fit of the measured fluorescence decays, this technique
does not perform actual deconvolution of the excitation light
pulse.

Global analysis algorithms have also been proposed for the
analysis of FLIM images [28]–[31]. This approach considers
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prior information (i.e., spatial invariance of the lifetime of each
fluorescent species in the image) to significantly reduce the de-
grees of freedom in the fitting algorithm, resulting in better
estimation of the relevant parameters (i.e., global time con-
stants and maps of relative amplitudes). Verveer et al. showed,
for frequency domain FLIM images [28]–[30], that a global
fitting was able to accurately estimate the parameters from
a system of two exponential decays, whereas pixel-by-pixel
analysis could only extract a single average lifetime. Pelet et
al. [31] reported a fast global fitting algorithm using iterative
convolution to extract two lifetimes of a biexponential system.
This method used morphological information derived from the
images to make educated initial guesses for the global fitting
parameters. Although all these methods have shown signif-
icant improvement in fitting quality and computation speed,
they still have to assume a single or biexponential model for
the decay function and are too computationally expensive for
practical application.

In complex biological systems, fluorescence emission typi-
cally originates from several fluorophores and is affected by light
absorption and scattering. From such a complex medium, how-
ever, it is not entirely adequate to analyze the time-resolved fluo-
rescence decay transient in terms of multiexponential functions
[27], [32]. Moreover, different multiexponential expressions can
reproduce experimental fluorescence decay data equally well,
suggesting an advantage in avoiding any a priori assumption
about the functional form of the IRF decay physics. Recently,
we reported a novel model-free deconvolution method for time-
resolved fluorescence point spectroscopy data [33], in which the
IRF is expanded on the discrete time Laguerre basis [34]. We
demonstrated that this method is able to expand any fluores-
cence intensity decay of arbitrary form, converging to a correct
solution significantly faster than conventional multiexponen-
tial approximation methods [33]. Extending on the early work,
the goal of the present study was to develop a new method
for fluorescence lifetime imaging microscopy analysis, based
on the Laguerre expansion technique [33], [34]. The proposed
method, which can also be viewed as a global analysis approach,
has been tested on synthetic and experimental FLIM images,
and its performance was compared against other methods for
FLIM analysis.

II. METHODS

A. Laguerre FLIM Deconvolution Method

The Laguerre deconvolution technique expands the fluores-
cence impulse response functions (IRF) on the discrete time
Laguerre basis [33]. The Laguerre functions (LF) have been
suggested as an appropriate orthonormal basis for expanding
asymptotically exponential relaxation dynamics, due to their
built-in exponential term [34]. Because the Laguerre basis is
complete and orthonormal, a unique characteristic of this ap-
proach is that it can reconstruct a fluorescence response of arbi-
trary form.

In the context of time-domain FLIM, the series of measured
time-gated fluorescence intensity maps H(r, t) are given by the

convolution of IRF h(r, t) with the excitation light pulse x(t)

H(r, t) = T ·
K−1∑

m=0

h(r,m)x(t − m), t = 0, . . . , N − 1 (1)

where r denotes pixel location, t denotes time gate, K de-
termines the extent of the system memory, T is the sampling
interval, h(r, t) is the intrinsic IRF at the pixel r, and N is the
number of time-gated images.

The Laguerre deconvolution technique uses the orthonormal
set of LF bα

j (t) to expand the IRF

h(r, t) =
L−1∑

j=0

cj (r)bα
j (t) (2)

where cj (r) are the unknown Laguerre expansion coefficients
(LEC) at the pixel r, which are to be estimated from the input-
output data; bα

j (t) denotes the jth order LF; and L is the number
of LFs used to model the IRF.

The LF basis is defined as

bα
j (t) = α(t−j)/2(1 − α)1/2

j∑

k=0

(−1)k

(
t
k

)

×
(

j
k

)
αj−k (1 − α)k , t ≥ 0. (3)

The order j of each LF is equal to its number of zero-crossing
(roots). The Laguerre parameter (0 < α< 1) determines the
rate of exponential decline of the LF and defines the time scale
for which the Laguerre expansion of the system impulse re-
sponse is most efficient in terms of convergence [34]. Thus,
fluorescence IRF with longer lifetime may require a larger α
for efficient representation. Commonly, the parameter α is se-
lected based on the kernel memory length K and the number
of Laguerre functions L, so that all the LFs decline sufficiently
close to zero by the end of the impulse response [33], [34].

By inserting (2) into (1), the convolution equation (1)
becomes

H(r, t) =
L−1∑

j=0

cj (r)vα
j (t)

vα
j (t) = T

K−1∑

i=0

bα
j (m)x(t − m) (4)

where vα
j (t) is the discrete convolution of the excitation input

with the LF of order j, commonly denoted as the “key vari-
able” [34]. The unknown expansion coefficients cj (r) are then
estimated by generalized linear least-square fitting, using the
data H(r, t) and vα

j (t).
The proposed FLIM deconvolution method takes advantage

of the orthogonality of the Laguerre functions [34], which im-
plies that the expansion coefficients are independent from each
other and can be estimated separately. This condition allows us
to reformulate the computation of the Laguerre expansion co-
efficients given in (4) as follows. Let us first resample the key
variables vα

j (t) at the times tk , k = 1, 2, . . . , N , at which the
images H(r, t) were acquired. By considering the case when
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j = 0 in (4), the first expansion coefficient can be estimated
using the images H(r, tk ) and the first resampled key variable
vα
0 (tk ) by solving the following system of linear equations:

H(r, tk ) = c0(r) · vα
0 (tk ), k = 1, . . . , N. (5)

The analytical solution of c0(r) as defined in (5) using a least-
square approach is given by

c0(r) = (v̄α
0 (t)′ · v̄α

0 (t))−1v̄α
0 (t)′ · H(r, tk ) (6)

where v̄α
0 (tk ) is a vector containing the N values of the key

variable, and is defined as

v̄α
0 (t) = [vα

0 (t1), . . . , vα
0 (tN )]′ . (7)

Finally, (6) can be rewritten in a term-by-term form as

c0(r) =
∑N

k=1 vα
0 (tk ) · H(r, tk )

∑N
k=1(vα

0 (tk ))2
. (8)

The previous expression indicates that the complete map of coef-
ficients c0(r) is given simply by the sum of the delayed images
H(r, tk ) weighted by the vα

0 (tk ) values at the corresponding
gated times tk , k = 1, 2, . . . , N , and normalized by the sum of
squares of the key variable values over all the gated times. Since
this operation involves only the sum of N weighted images, its
computation can be performed very fast.

Once the map of the first expansion coefficient c0(r) is com-
puted, the maps of the higher expansion coefficient cj (r)(j =
1, . . . , L − 1) can be estimated using a similar approach de-
scribed as follows. Let us generalize the method for the esti-
mation of the jth expansion coefficient map cj (r). First, the N
“residual images” resulting after the estimation of the previous
map cj−1(r) are computed as follows:

Hj (r, tk ) = Hj−1(r, tk ) − cj−1(r) · vα
j−1(tk ), k = 1, . . . , N.

(9)
with initial condition H0(r, tk ) = H(r, tk ).

Finally, cj (r) is solved by updating (8) as follows:

cj (r) =
∑N

k=1 vα
j (tk ) · Hj (r, tk )

∑N
k=1(vα

j (tk ))2
. (10)

Again, the estimation of the complete maps of the L expansion
coefficients involves only sums and subtractions of matrixes,
making the process very fast. Once the maps of expansion coef-
ficients are estimated, the map of lifetimes can be determined by
first constructing the IRF at every pixel using (2). The lifetime
map is then computed by interpolating the time point at which
the IRF becomes 1/e of its maximum value. This last process in-
volves matrix subtractions and arrays division, thus demanding
longer computation time than the estimation of cj (r).

B. Global Analysis: The Laguerre Expansion and
Biexponential Methods

In the context of FLIM, it can often be assumed that the flu-
orescence signal is coming from a given number of molecular
species with different lifetimes, whose relative contribution vary
spatially, but the lifetime values themselves remain invariant.
Under this condition, instead of analyzing each pixel separately,

it may be more accurate to analyze all pixels simultaneously.
This approach is adopted in global analysis. Recently, global
analysis has been applied to FLIM data, in which the pixel
decays are assumed biexponential, with fixed global time con-
stants and a spatially variable intensity ratio of the two lifetime
components [28]–[31]. Similarly, our proposed Laguerre FLIM
deconvolution method uses a common Laguerre basis to expand
the decays at every pixel of the complete images, and estimate
the maps of expansion coefficients. Thus, the Laguerre method
can be considered as a global analysis approach. In this sec-
tion, we demonstrate how the Laguerre expansion technique is
analytically related to the global biexponential fitting approach.

Let us assume that the deconvolved image h(r, t) given in (2)
can also be expressed as a biexponential expansion as follows:

h(r, t) = s[A1(r)e−t/τ1 + (1 − A1(r))e−t/τ2 ]. (11)

Here, the global time constants (τ1, τ2) and the intensity ratio
of the two lifetime components A1(r) at every pixel r have to
be estimated from the data by global analysis. The parameter s
represents a scaling factor, which for simplicity, is not carried
on in the rest of the analysis.

Let us also assumed that each exponential component in (11)
is expanded using the same Laguerre basis as in (2), yielding
the following relations:

e−t/τ1 =
L−1∑

j=0

a1,j · bα
j (t)

e−t/τ2 =
L−1∑

j=0

a2,j · bα
j (t). (12)

Inserting (12) in (11), the expression of the deconvolved image
becomes

h(r, t) = A1(r)




L−1∑

j=0

a1,j b
α
j (t)





+ (1 − A1(r))




L−1∑

j=0

a2,j b
α
j (t)





=
L−1∑

j=0

(A1(r)a1,j + (1 − A1(r))a2,j ) bα
j (t). (13)

Finally, from (2) and (13), we can relate the expansion coeffi-
cients cj (r) of the deconvolved image h(r, t) to the intensity
ratio of the two lifetime components A1(r) as follows:

cj (r) = A1(r)a1,j + (1 − A1(r))a2,j , j = 0, . . . , L − 1

= a2,j + (a1,j − a2,j )A1(r). (14)

Equation (14) clearly shows that each Laguerre expansion co-
efficient cj (r) is linearly related to the intensity ratio of the two
lifetime components A1(r). In practice, we may not need to esti-
mate the global time constants (τ1, τ2) and compute their expan-
sion coefficients {a1,j , a2,j} and the actual values of A1(r). The
relation given by (14) demonstrated that the relative contribution
of the two exponential components can be indirectly monitored
extremely quickly by means of the expansion coefficients cj (r).
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C. Synthetic FLIM Image Generation

The synthetic FLIM images of 64× 64 pixels were gener-
ated by means of a biexponential model, with fixed decay con-
stants (2 and 12 ns) and increasing relative contributions of the
shortest lifetime. White noise of zero mean and two different
variance levels was added to the data, yielding two different
sets of images, at approximately 40- and 26-dB signal-to-noise
ratios (SNRs). A laser pulse (see Section II-E) was used as the
excitation signal for our simulation. All the data sets were con-
volved with the laser signal and arranged accordingly to form
the synthetic FLIM image series for our simulation.

D. Validation of the Laguerre Method Against Standard
and Global Algorithms

The Laguerre deconvolution technique was applied to the
synthetic FLIM images, using model orders ranging from 3–6
LFs. Three other deconvolution algorithms were also applied to
validate our technique. The first was based upon the standard
“biexponential” fitting, where all three parameters (two time
constants and relative amplitude) are estimated independently
at every pixel. The second was a “time invariant” fit method [28],
where the two time constants are extracted from a decay curve
calculated from the sum of all pixels, and kept fixed for the com-
putation of the relative amplitudes at every pixel. The third was
a recently developed “global” analysis approach that uses itera-
tive convolutions to extract the two global lifetime components
corresponding to the whole image, and the map of relative am-
plitudes. The code for the global analysis was provided by Dr.
Serge Pelet, from the Department of Mechanical Engineering
and Division of Biological Engineering, at the Massachusetts
Institute of Technology [31].

E. Experimental FLIM Images Acquisition

Four sets of measured FLIM images were used for algo-
rithm validation. Data was collected from: 1) a solution of Rose
Bengal (R3877, Sigma-Aldrich, St. Louis, MO) in ethanol;
2) a solution of Rhodamine B (25 242, Sigma-Aldrich) in
ethanol; 3) rat glioma C6 cells (ATCC CCL-107) stained with
JC-1 (J-aggregate formation of the lipophilic cation, Molecular
Probes); and 4) rat glioma C6 cells (ATCC CCL-107) stained
with Rhodamine 123 (Molecular Probes). An inverted micro-
scope (Axiovert 200, Carl Zeiss, Germany) operating in epi-
illumination mode was utilized for the FLIM image acquisition.
A subnanosecond nitrogen laser (MNL200, Lasertechnik Berlin,
Berlin, Germany) was used to provide excitation at 337.1 nm
with a full-width at half-maximum (FWHM) pulse duration
of ∼700 ps (maximum pulse energy 100 µJ, repetition rate
0–50 Hz). A picosecond gated ICCD imaging system (PicoStar
HR12, LaVision, Gottingen, Germany) was used for gated time-
domain image acquisition.

Fig. 1. Synthetic images. Top panels: Analysis of the FLIM images at 40-dB
SNR, showing the maps of the model-derived lifetimes, the estimated lifetimes,
the normalized mean square error (NMSE), and the first three Laguerre expan-
sion coefficients (LEC-0 to LEC-2). The bar-scales (left side of the maps) show
the range of values on the maps. Bottom panels: Synthetic and estimated decays
from a sample pixel of the image are shown with the corresponding normalized
estimation error (NErr) and its autocorrelation function (Acorr).

III. RESULTS

A. Laguerre Method Accuracy Tested on Synthetic FLIM
Images

Fig. 1 depicts the map of the model-derived lifetimes of the
synthetic FLIM images at 40 dB SNR and the correspond-
ing maps of estimated lifetimes, normalized mean square error
(NMSE), and first three Laguerre expansion coefficients (LEC-0
to LEC-2). The map of estimated lifetime values closely resem-
bled the map of the synthetic lifetime values. The normalized
mean square errors (NMSE) estimated from the reconstructed
decays computed at every pixel of the image showed values be-
low 2%. The maps of LEC-0 and LEC-2 resembled the variation
in the lifetime values, while LEC-3 showed the opposite trend.
These findings suggested that the Laguerre expansion coeffi-
cients are correlated with the lifetime values. A synthetic and
estimated decay at a sample pixel and the corresponding normal-
ized error (Nerr) and residual autocorrelation function (ACorr)
are shown in Fig. 1 (bottom panels). The Nerr was below 5%
and the ACorr was mostly contained within the 95% confidence
interval (dotted lines). These observations indicate an excellent
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Fig. 2. Synthetic images. Top panels: Analysis of the FLIM images at 26-dB
SNR, showing the maps of the model-derived lifetimes, the estimated lifetimes,
the normalized mean square error (NMSE), and the first three Laguerre expan-
sion coefficients (LEC-0 to LEC-2). The bar-scales (left side of the maps) show
the range of values on the maps. Bottom panels: Synthetic and estimated decays
from a sample pixel of the image are shown with the corresponding NErr and
Acorr.

fit between the synthetic and estimated fluorescence decays,
showing that the fluorescence IRF was properly estimated by
the Laguerre deconvolution.

Similar results were obtained from the analysis of the syn-
thetic FLIM images at 26-dB SNR (Fig. 2). In this case, however,
the map of estimated lifetimes appeared noisy and biased com-
paring to the synthetic lifetime map, although still resembling
the lifetime variation. The NMSE values were higher (about
10%) than in the 40-dB case. The maps of LECs were noisier
when compared to the ones obtained at 40-dB SNR but still
resembled the variation in the lifetime values. The NErr was
below 10% and the ACorr was mostly contained within the
95% confidence interval (dotted lines). These observations also
indicate a good fit between the synthetic and estimated fluores-
cence decays in spite of the considerable noise level, suggesting
robustness of the Laguerre technique.

B. Global Analysis: The Laguerre Expansion
and Biexponential Methods

To quantify the accuracy of the Laguerre technique for es-
timating the lifetime values of the image pixel decays, we
applied a correlation analysis between the synthetic and the

Fig. 3. Synthetic images. Correlation between synthetic and estimated life-
times; and the linear relations between the LECs and the intensity ratio A1
of the two underlying lifetime components. Top panels: 40-dB images. Bottom
panels: 26-dB images. The equations correspond to the least-square solution of
a linear fitting to the LEC versus A1 data.

estimated lifetimes. The results (Fig. 3) showed a perfect
(r = 1) and near perfect (r = 0.99) correlation between es-
timated and synthetic lifetimes at 40-dB and 26-dB SNR,
respectively.

As shown in (14), each LEC cj (r) is linearly related to
the intensity ratio of the two underlying lifetime components
A1(r) from the biexponential model. By means of analysis of
the synthetic biexponential FLIM images, it was possible to
confirm experimentally the linear relation between cj (r) and
A1(r). As observed in Fig. 3 at both 40-dB and 26-dB SNR, the
first three LECs were linearly related to the relative intensity
A1(r) of the two underlying lifetime components. More
interestingly, these linear relations were unaffected by the noise
level (40 dB left, 26 dB right), as shown by the linear equations
derived from least-square fitting of the LECs versus A1(r) data.
Furthermore, these linear relations derived from data fitting
were compared against the ones obtained analytically using
(14). The results (Table I) indicate that the analytical derivation
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TABLE I
LINEAR RELATIONS BETWEEN LECS (cj ) AND A1 DERIVED ANALYTICALLY

AND FROM DATA FITTING

Fig. 4. Comparison of the deconvolution methods. Top panels: True inten-
sity ratio A1 (ranging from 0 to 1) of the two lifetime components, and the
corresponding estimated values using the standard biexpoential, time invariant,
global, and Laguerre methods, at 40-dB and 26-dB SNR. Bottom panels: His-
togram of the deviations of the estimated A1 from their true values by each of
the algorithms tested.

TABLE II
COMPUTATION TIME BY THE FOUR METHODS

of the cj (r) equations under both noise levels resembled very
closely the actual cj (r) versus A1(r) relations obtained by
data fitting.

C. Validation of the Laguerre Methods Against
Current Algorithms

The results obtained from the analysis of the synthetic FLIM
images by the Laguerre deconvolution technique were compared
against the performance by standard and global methods. The
results of this intermethodology comparison are summarized in
Fig. 4 and Table II. The true intensity ratios A1(r) and their
estimated values using the standard biexponential, time invari-
ant, global analysis, and Laguerre methods, at 40- and 26-dB

SNR are shown in Fig. 4. All tested algorithms provided a good
estimation of the A1(r). The Laguerre and the time invariant
algorithms were almost insensitive to the noise level and pro-
vided good estimation of A1(r) at both 40- and 26-dB SNR. The
global analysis and the standard biexponential algorithms per-
formed well at 40-dB SNR, but were sensitive to the noise level
providing less accurate estimation at 26-dB SNR. The standard
biexponential algorithm provided the less accurate estimation
overall. The histograms of the deviations of the estimated A1(r)
from their true values by all the algorithms tested are also given
in Fig. 4. The Laguerre and the time invariant methods presented
small deviations from the true A1(r) values (less than 0.03 ns
and 0.1 ns at 40- and 26-dB SNR, respectively), although the
time invariant method performed slightly better. The global fit-
ting and the standard biexponential methods presented larger
deviation from the true A1(r) values (less than 0.05 ns and 0.2
ns at 40- and 26-dB SNR, respectively).

In addition, the computation time spent by each algorithm to
analyze the synthetic FLIM images were assessed and compared
(Table II). By far, the Laguerre deconvolution approach was the
fastest of all methods tested (0.4 s to compute the LECs, and
1.1 s to compute the lifetime values). The computational time
was also insensitive to the noise level. The global fitting and
the time invariant algorithms showed similar computation time
(∼380–700 s), and the standard biexponential method presented
by far the slowest performance (> 3000 s). These results indicate
that the Laguerre method was at least two orders of magnitude
faster than the global analysis and the time invariant algorithms,
and at least three orders of magnitude faster than the standard
biexponential method.

D. Analysis of the Measured FLIM Images

1) Fluorescence Lifetime Standards: Results of the analysis
of FLIM images from the solution of Rose Bengal in ethanol
are presented in Fig. 5. The intensity map showed higher val-
ues at the center of the image, while the lifetime map was
uniform with values at about 750 ps. The maps of Laguerre
expansion coefficients were also uniform. The map of NMSE
showed values below 10%, indicating a very good fitting for
every pixel of the image. The Nerr were below 20% and ran-
domly distributed around zero. The autocorrelation function of
the residuals was mostly contained within the 95% confidence
interval (dotted lines). These observations also indicate a good
fit between the measured and estimated fluorescence decays.
The map histograms indicate the range of lifetime and LECs
values present in the image. All the parameters showed a nar-
row distribution. The lifetime was centered at 771 ps, the LEC-0
at 0.448, the LEC-1 at 0.314, and the LEC-2 at 0.106. The av-
erage lifetime value was very close to the lifetime of 769 ps
obtained from spectroscopy measurements of equivalent solu-
tion with a time-resolved fluorescence spectroscopy system, as
previously reported [33].

Results of the analysis of FLIM images from the solution of
Rhodamin B in ethanol are also presented in Fig. 6. For this
case, the lifetime map was uniform with values ∼2500 ps. The
maps of Laguerre expansion coefficients were also uniform. The
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Fig. 5. Results of the analysis of FLIM images from Rose Bengal in ethanol (Upper panels). Color panels: maps of normalized intensity values, lifetimes, NMSE,
and normalized LECs. The bar-scales on the bottom of the maps show the range of values on the maps. Upper right panels: measured and estimated decays
corresponding to a sample pixel of the image and the corresponding NErr and Acorr. Bottom panels: map histograms indicating the distribution of lifetime and
LECs values in the image. Results of the analysis of FLIM images from Rhodamin B in ethanol are also shown below.

Fig. 6. Results of the analysis of FLIM images from glioma cells in JC-1 (upper panels). Color panels: maps of normalized intensity values, lifetimes, NMSE
and normalized LECs. The bar-scales on the bottom of the maps show the range of values on the maps. Upper right panels: measured and estimated decays
corresponding to a sample pixel of the image and the corresponding NErr and Acorr. Bottom panels: map histograms indicating the distribution of lifetime and
LEC values in the image. Results of the analysis of FLIM images from gliomacells in R123 are also shown below.

map of NMSE showed values below 5%. The Nerr and ACorr
also indicate good fit. The parameter histograms also showed a
narrow distribution, with the lifetime centered at 2642 ps, the
LEC-0 at 0.692, the LEC-1 at 0.264, and the LEC-2 at 0.044.
The average lifetime value was very close to the lifetime of 2872
ps obtained spectroscopically [33].

2) Live Cell Imaging: The FLIM images from the glioma
cells stained with JC-1 are presented in Fig. 6. The intensity
image presented a large variability across the cell, while the
maps of lifetime and Laguerre expansion coefficients were also
uniform. The map of NMSE, and the Nerr and ACorr showed
good fit between measured and estimated decays. All the pa-
rameter histograms showed a narrow distribution. The lifetime
was centered at 884 ps, the LEC-0 at 0.505, the LEC-1 at 0.302,
and the LEC-2 at 0.193.

The FLIM images from the glioma cells stained with R-123
dye are also given in Fig. 6. The intensity image presented differ-
ent levels with higher values on the cell membrane. The lifetime
map was uniform in the areas corresponding to the glioma cells,
presenting values around 1800–2000 ps. Longer lifetimes, in
the order of 2000–2500 ps, were also present in the vicinity
of the cells, but were less representative. The map of LEC-0
showed values in the order of 0.85–0.9 within the cell areas, and
lower values (<0.85) in the vicinity of the cells. The map of
LEC-1 presented similar distribution as LEC-0, although show-
ing negative values in the range of−0.2– 0, where the cell areas
corresponded to the less negative values. The map of LEC-2
showed values between 0 and 0.1. The map of NMSE showed
values below 5%, and the Nerr was below 5% and randomly dis-
tributed around zero. The autocorrelation function of the resid-
uals was contained within the 95% confidence interval (dotted
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lines). The lifetime histogram was centered at 1891 ps and was
broad covering a range of 1500–2500 ps. The histogram of LEC-
0 and LEC-1 were also broad (covering values between 0.7–0.9
and −0.2–0, respectively) and centered at 0.827 and −0.085,
respectively. The histogram of LEC-2 presented a short tail to-
wards the lower values and was centered at 0.095.

IV. DISCUSSION

Validation in synthetic FLIM images. The Laguerre decon-
volution technique was successfully tested in a set of syn-
thetic FLIM images covering a broad range of lifetime values
(2–12 ns) derived from a biexponential model. This lifetime
range was chosen intentionally, since a number of biologically
relevant fluorophores emit in this time scale. The choice of a
biexponential model was also adequate, since current FLIM an-
alytical methods (including the ones compared in this study)
are not usually applied for more than two exponential compo-
nents. The proposed Laguerre deconvolution method was found
versatile and robust as demonstrated by its ability to accurately
retrieve the underlying IRFs at every pixel of the synthetic FLIM
images covering a broad dynamic range under moderate noise
condition (40- and 26-dB SNR).

Our results demonstrated that each Laguerre expansion coef-
ficient is highly correlated with the intrinsic lifetime value. For
the case of the multiexponential deconvolution, the estimated
average lifetime usually correlates with the intrinsic radiative
lifetime. However, the individual multiexponential parameters
(decay constants and pre-exponential coefficients) may not nec-
essarily correlate to the intrinsic lifetimes. This was shown in
Fig. 4, where the standard biexponential method was not able
to accurately estimate the intensity ratio of the two underlying
lifetime components A1(r). The lack of correlation between in-
dividual multiexponential parameters and the radiative lifetime
is a result of the intrinsic nature of the multiexponential model.
This model does not represent an orthogonal expansion of the
fluorescence IRF. Therefore, the estimated fitting parameters
are not independent from each other (the value of one parameter
would be determined by both the data to be fitted and the value of
the other fitting parameters) [32]. In contrast, the Laguerre basis
provides an orthogonal expansion of the IRF. Consequently, the
value of each LEC depends exclusively on the data to be fit-
ted, making them highly correlated to the actual decay lifetime
values [33].

Global analysis. Another interesting observation is that the
Laguerre deconvolution technique represents a way of perform-
ing global analysis on the FLIM images. In the context of clas-
sical global analysis for FLIM, the spatial invariance of the
lifetimes of each exponential component (fluorescence specie)
is often assumed [28], [31]. That is, a global analysis algorithm
will estimate a unique set of time constants for the entire image,
and maps of relative intensities of the underlying exponential
components. Similarly, the Laguerre technique uses a unique
Laguerre basis (defined by the Laguerre parameter α) to expand
the complete set of IRFs at every pixel of the images. Thus, only
a single parameter α and the maps of LECs are to be estimated
from the data. Thus, the estimation of the spacial invariant time

constants can be related to the estimation of the Laguerre param-
eter α, and the computation of the maps of relative exponential
intensities to the computation of the maps of LECS. One ad-
vantage of the Laguerre method, however, is that for any value
of the Laguerre parameter α, the corresponding basis of LF is
complete and orthonormal. Thus, it is certain that the maps of
expansion coefficients can always be found and are unique for
the defined Laguerre basis. In contrast, deconvolution with the
multiexponential approach may yield more than one solution,
even when the number of exponential or the values of the time
constants are prefixed.

We also demonstrated, both mathematically (14) and experi-
mentally (from the analysis of the synthetic data, Table I), that
for the specific case of two fluorescence species in a single im-
age, each LEC is linearly related to the relative intensity A1(r)
of the two lifetime components. Thus, the maps of LECs are
correlated to the map of A1(r) and indirectly reflect the spa-
tial variation of the biexponential relative intensities. These two
findings indicates that the maps of Laguerre expansion coeffi-
cients constitute an extremely fast and original way of repre-
senting spatial distribution of time-resolved characteristics of
fluorescence species in a field of view, and has the potential for
quantitative interpretation of FLIM data.

It is important to note that, for the case of the synthetic data,
the two exponential components were known a priori, so it
was possible to compute their Laguerre expansion coefficients
{a1,j , a2,j} and the relative intensity values A1(r). In practice,
however, we may not need to estimate the global time con-
stants of the fluorescence species to compute the map of relative
amplitudes. The relation given by (14) demonstrated that the
map of relative intensities can be indirectly but extremely fast
monitored by means of the maps of Laguerre expansion coeffi-
cients. And even when the actual values of A1(r) be required, a
globally biexponential fit can always be performed on the esti-
mated IRFs obtained by the Laguerre technique. The values of
A1(r) can then be estimated using {a1,j , a2,j} from the derived
global time constants on (14). This approach will represent a
much faster way of performing global analysis on the complete
FLIM image, since only curve fittings instead of deconvolution
operations are required.

Validation against other methods. This study also demon-
strates the advantages of the proposed Laguerre deconvolution
technique with respect to conventional and other recently pro-
posed deconvolution methods [28], [31]. Our results indicated
that the Laguerre and the time invariant methods provide the
best performance in terms of estimating the A1(r) values of the
synthetic images. One explanation for the good performance of
the time invariant method is that the synthetic FLIM images
were, in fact, generated by two exponential components with
fixed time constants. This is exactly the assumption made by
the time invariant method. However, when the data diverges
from this strict assumption, as is often the case in practical
application, the time invariant method would probably per-
form less accurately, as it has been demonstrated in other stud-
ies [26], [28], and [31]. In contrast, the Laguerre method does
not make any assumption about the functional form (decay func-
tion) of the data. Moreover, and due to the orthogonality of the
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Laguerre basis, our method has the capability of always ex-
panding any IRF of arbitrary form. Thus, the Laguerre de-
convolution technique is a suitable approach for the analy-
sis of time-domain fluorescence data from complex systems.
It is also relevant to notice that the global analysis meth-
ods provided a good estimation of the relative intensities
from the synthetic data, in spite of not reaching the accu-
racy of the Laguerre method (especially under noisy condi-
tions). This particular result together with the poor perfor-
mance showed by the standard biexponential method indicate
that global approaches outperform pixel-by-pixel methods for
the analysis of FLIM data, as it has already been supported
by other studies [28], [31].

Computation speed. One of the most important finding of this
study was the clear advantage in terms of computation speed of
the Laguerre deconvolution technique over the other methods
considered. The proposed Laguerre method takes advantages
of the orthogonality of the Laguerre functions. This implies
that the expansion coefficients are independent from each other,
and therefore, each of them can be estimated separately. Unlike
standard FLIM global methods, which involve the iterative com-
putation of convolutions, the estimation of the complete maps of
the LECs involves only sums and subtractions of the complete
delayed images, making this process extremely fast. Further-
more, since the set of expansion coefficients summarize the
temporal properties of the IRF [33], a complete characterization
of the fluorescence decay at every pixel of the image can be
achieved in a few seconds. Due to its ultrafast performance, the
Laguerre method has the potential to be applied for the study
of dynamics events, allowing for monitoring temporal and spa-
tial variation of time-resolved characteristics of fluorescence
specimens. Thus, we consider that the proposed Laguerre de-
convolution technique for FLIM analysis could have a great
impact in a broad range of applications in medicine, biology,
biochemistry, and chemistry.

Validation in experimental FLIM images. The Laguerre de-
convolution method was also successfully tested on mea-
sured FLIM images from both fluorescence lifetime standards
and glioma cells stained with fluorescence probes. The fact
that the fluorescence standard lifetime values obtained by the
Lagurre method were very close to their literature reported val-
ues [33], confirms the accuracy of our technique. Also im-
portant was our finding that short lifetimes (rose Bengal in
ethanol) could be accurately retrieved by the Laguerre tech-
nique, suggesting the convenience of performing actual de-
convolution for the analysis of fast fluorescence decays. For
the case of the FLIM images from glioma cells stained with
Rhodamine 123, the lifetimes obtained (∼2000 ps) were slightly
shorter than the ones (2500–2800 ps) reported in a previous
study [35]. One possible explanation for this difference may be
related to the analytical methods used. The referred above study
applied plain curve fitting to analyze the FLIM data, while our
method performed actual deconvolution of the excitation pulse
from the complete images. Since the width of the excitation
pulse cannot always be infinitesimally short, the convolved IRF
(which corresponds to the measured decay curved fitted by stan-
dard methods) is always broader than the actual IRF (estimated

by our method). Thus, a shorter but more realistic lifetime value
by our technique is expected.

The observations that the maps of the LEC resemble the dis-
tribution of lifetimes in the cell images also support the idea of
using the LEC as a new domain of representing spatial distribu-
tion of time-resolve information for FLIM applications. These
results could be translated to other more interesting application,
such as fluorescence energy resonance transfer (FRET) experi-
ments [15], [16]. In FRET experiments, one expects to measure
two different lifetimes produced by interacting and noninter-
acting proteins. The noninteracting labeled proteins exhibit a
natural lifetime of the dye, whereas the interacting proteins will
exhibit a shorter lifetime due to the quenching of the emission
by energy transfer. The spatial configuration of the donor and
acceptor is fixed upon binding, which determines the decrease in
the donor lifetime. When FRET is imaged with FLIM, the decay
model is assumed to be biexponential with spatially invariant
lifetimes. Therefore, an ultrafast global analysis approach, such
as the Laguerre deconvolution method, could represent a pow-
erful tool for evaluating the populations and properties of bound
and unbound proteins states in cells. Although the results of
the present study are encouraging, we realize that the proposed
Laguerre method still need to be thoroughly validated on a broad
variety of FLIM applications.

Another observation is that the Laguerre method needs
only half or less of the acquired delayed images available
for the analysis of the measured FLIM data. This indicates
that accurate estimation of the IRF at every pixel can be
achieved with considerably few data points with the proposed
technique, in contrast to standard FLIM deconvolution meth-
ods that require the acquisition of tens of delayed images
[21]. Therefore, since less delayed images would be needed,
our method would not only allow for a significant reduc-
tion of the computation time but also of the acquisition time.
This would be highly desirable in the context of functional
fluorescence lifetime imaging, where real-time acquisition
is required.

Finally, most algorithms used on current FLIM systems
require the assumption that the excitation light pulses are neg-
ligibly short, so that the fluorescence emission can be ap-
proximated to the intrinsic IRF [21]. To accommodate this
requirement, these systems need to use ultrafast (i.e., fem-
tosecond) light sources, which are in general too expen-
sive and sophisticated to be used in practical applications.
Since our proposed Laguerre technique deconvolves the ex-
citation light pulse from the measured images within sec-
onds, the requirement of an ultrashort excitation pulse can
be relaxed. Thus, our technique has the potential for pro-
moting the development of less expensive and less complex
FLIM systems that could be used in a variety of practical
applications.

V. CONCLUSION

We have developed and tested a new method for analy-
sis of fluorescence lifetime imaging microscopy data based
on the Laguerre expansion technique [33], [34]. The results
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of this study demonstrated a number of interesting properties.
1) The intrinsic fluorescence intensity decays of any form can
be estimated at every pixel of the image as an expansion on a La-
guerre basis, without a priori assumption of its functional form,
thus providing a robust and versatile method for FLIM analy-
sis. 2) Since the fluorescence IRF at every pixel is expanded
in parallel using a common Laguerre basis, the computation
speed is extremely high, performing at least two orders
of magnitude faster than standard deconvolution algorithms.
3) The estimated maps of Laguerre expansion coefficients of-
fer a new domain for representing the spatial distribution of
the time-resolved characteristics of the fluorescence specimens
imaged by FLIM. 4) The Laguerre deconvolution technique rep-
resents a way of performing global analysis in the FLIM images
very fast and accurate. 5) The number of images required to
expand the fluorescence IRF is relatively low, thus allowing the
reduction of the acquisition time. In addition, since actual de-
convolution of the excitation pulse is performed, ultrafast light
sources are not longer required, allowing to promote the devel-
opment of less expensive FLIM systems.

Although our method still have to be validated on a broad va-
riety of FLIM applications, the results of this study indicate that
the Laguerre deconvolution technique represents a more robust
and extremely fast analytical method. The developed technique
will likely enable the use of FLIM in practical real-time
applications in medicine, biology, biochemistry, and chemistry.
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