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Abstract. Optical biopsy techniques offer a minimally invasive, real-time alternative to traditional biopsy and path-
ology during tumor resection surgery. Diffuse reflectance spectroscopy (DRS) is a commonly used technique in
optical biopsy. Optical property recovery from spatially resolved DRS data allows quantification of the scattering
and absorption properties of tissue. Monte Carlo simulation methods were used to evaluate a unique fiber-optic
probe design for a DRS instrument to be used specifically for optical biopsy of the brain. The probe diameter was
kept to a minimum to allow usage in small surgical cavities at least 1 cm in diameter. Simulations showed that the
close proximity of fibers to the edge of the probe resulted in boundary effects due to reflection of photons from the
surrounding air–tissue interface. A new algorithm for rapid optical property recovery was developed that accounts
for this reflection and therefore overcomes these effects. The parameters of the algorithm were adjusted for use over
the wide range of optical properties encountered in brain tissue, and its precision was evaluated by subjecting it to
random noise. This algorithm can be adapted to work with any probe geometry to allow optical property recovery in
small surgical cavities. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.10.107004]
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1 Introduction
Intraoperative guidance of tumor resection surgery is an emerg-
ing technology that is being adopted in many different forms in
operating rooms around the world.1–3 This has widespread appli-
cations, but can be especially important during the resection of
glioblastomas: grade IV brain tumors with a poor prognosis.
These infiltrating glial tumors originate from normal brain
cells and have an appearance that is similar to the surrounding
tissue,4 especially in the margins, meaning that optimal resection
is difficult to achieve. Studies have indicated that complete
resection is beneficial to patients presenting with both low-
and high-grade gliomas.5,6

Optical spectroscopy is a promising technique that has been
investigated for intraoperative use. It allows rapid, minimally
invasive analysis of the composition of tissue—a process com-
monly referred to as optical biopsy. Various optical biopsy
modalities have been developed and investigated in different
diseases, including cancers of the breast,7,8 oral mucosa,9,10

and brain.11 Fiber-optic probes are typically used to both deliver
light to the target tissue and collect the resulting optical signal
for analysis. These spectroscopy devices offer a low-cost alter-
native to more expensive imaging techniques such as intraoper-
ative magnetic resonance imaging3,4 and can be designed so that
they do not require the injection of exogenous fluorophores as is
often the case in intraoperative fluorescence imaging.12,13

Because the area of tissue investigated by these devices is lim-
ited, they are not suited for wide-field applications but are ideal
for localized investigations within small, well-defined areas
such as surgical cavities.

Diffuse reflectance spectroscopy (DRS) is a technique that is
often used during optical biopsy.14–16 The reflectance spectra
obtained with this modality can be used to extract quantitative
information on the scattering and absorption of light in tissue—a
process known as optical property recovery. The optical proper-
ties recovered by this process are the absorption coefficient μa
and reduced scattering coefficient μ 0

s ¼ μsð1 − gÞ, where μs is
the scattering coefficient and g is the anisotropy coefficient
of the tissue.

Many different methods have been developed for the deter-
mination of tissue optical properties. Some rely on time-
resolved (time or frequency domain) measurements, while
others are based on steady-state measurement of DRS signals.
Time-resolved techniques use time-dependent diffusion theory
or Monte Carlo modeling to predict the time of flight of photons,
and fit these data to experimental results. Time-domain methods
use a very short (picosecond) light pulse and measure how long
it takes photons to reach the detector, while frequency-domain
methods use a modulated light source and match the measured
phase shift, amplitude modulation, and/or steady-state intensity
of the reflectance with those predicted by the Fourier transform
of the time-domain diffusion theory formula. An example of a
time-domain system for optical property recovery in human
tissue is described by Svensson et al.,17 while examples of
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frequency-domain systems are given by Fishkin et al.18 and
Gurfinkel et al.19

Some of the methods used to measure steady-state tissue
reflectance include total reflectance measurements with integra-
tion spheres, spectrally constrained diffuse reflectance measure-
ments, and spatially resolved diffuse reflectance measurements.
When performing spectrally constrained diffuse reflectance
measurement, the reflectance spectrum is measured using a sin-
gle detector fiber located some distance from a source (illumi-
nation) fiber. A diffusion theory model of the reflectance
calculated using a priori knowledge of the scattering spectra
of the chromophores assumed to be present in the tissue is
then fitted to this measured spectrum.20 Recently, this method
was expanded to more than one radial distance to allow use
over a wider range of optical properties.21

Spatially resolved steady-state DRS (SR-DRS), on the other
hand, uses multiple detector fibers placed at different distances
from a source to obtain measurements of the reflectance versus
radial distance. Spatial reflectance curves predicted using diffu-
sion theory or Monte Carlo modeling are then fitted to these
data. When using a broadband light source and spectrometer,
fitting must be performed at each different wavelength of inter-
est to determine the absorption and scattering spectra.

In this study, optical properties are recovered from SR-DRS
data. When compared to time-resolved techniques, this method
uses simpler, generally less expensive equipment, requiring only
a fiber-optic probe and spectrometer (either an imaging spec-
trometer or a separate single-channel spectrometer for each
source–detector separation). This method differs from the spec-
trally constrained technique in that it can be used to extract opti-
cal properties without advance knowledge or assumptions of
which chromophores are present in the tissue.

Monte Carlo simulation is an effective tool to study photon
transport in tissue.22,23 It offers advantages over diffusion theory
and other numerical methods that are accurate only for large
source–detector separations and correspondingly large probes.
Probability distributions are used to describe local interactions
of photons with their surroundings, and the individual histories
of many different photons are simulated as they travel through
tissue. Optical properties can be effectively recovered from
SR-DRS data using Monte Carlo simulations.24,25

Our group is working to develop an optical biopsy instru-
ment that makes use of SR-DRS measurements to recover
the optical properties of brain tissue. This instrument will
later be combined with a time-resolved fluorescence spectros-
copy (TRFS) system that is being developed concurrently.26

Because both DRS and TRFS make use of fiber-optic probes,
integrating two such systems is a relatively straightforward
task. Potential benefits of this integration include two
independent sources of contrast for tissue composition analysis
and the possibility of intrinsic fluorescence spectroscopy (IFS).
IFS is a technique explored by many other groups in this
field,7,27–31 which uses DRS data to correct distortions in
fluorescence spectra that result from scattering and absorption
of light in tissue.

The purpose of this paper is to present the development of a
unique small-diameter fiber-optic probe design meant for DRS
of brain tissue in small surgical cavities and to present a modi-
fied optical property recovery algorithm developed for use with
this probe design. This expands upon previous results32 by dem-
onstrating (through simulations) the incompatibility of previous
optical property recovery algorithms with the new probe design

and documents the optimization of the parameters of the Monte
Carlo simulations used in the algorithm.

2 Models and Methods

2.1 Monte Carlo Models

All Monte Carlo codes used in this study simulated a single
layer of tissue with homogeneous optical properties and a refrac-
tive index of 1.4. The same procedures were used for selecting
photon step size, absorption/scattering, and boundary inter-
actions as those described by Wang et al.23 The Henyey–
Greenstein phase function33 was used to calculate the scattering
angle of photons23,34,35 and all simulations assumed an
anisotropy factor (g) of 0.9. This was considered appropriate
as the anisotropy factor of brain tissue is close to 0.9 across
the spectral range of interest.36

The use of a single anisotropy coefficient is a common
approach taken when modeling reflectance data.14,15,27

Although decreasing jgj means that scattering is more isotropic
and therefore shifts spatial reflectance curves toward shorter
source–detector separations, it has been demonstrated that
when g > 0.8, changes to the anisotropy factor have a minor
effect on the reflectance.24,25

The absorption and reduced scattering coefficients (μa and
μ 0
s) used in these simulations were chosen to be similar to

those of human brain tissue (both gray and white matter) at vari-
ous wavelengths. The wavelengths investigated in this study
were from 360 to 950 nm, as these are the limits of the spec-
trometer to be used in the final DRS instrument. The optical
properties of brain tissue at these wavelengths were taken
from results published in a study by Yaroslavsky et al.,36 and
representative values are shown in Table 1. These values
were used to define the range over which a DRS instrument
used in the brain would be expected to operate, and we therefore
ensured that the optical property algorithms were effective
within this range.

A number of Monte Carlo–based techniques are described in
this section. The first is the Mono Monte Carlo method, a tech-
nique for determining optical properties from SR-DRS data
using the results of a single Monte Carlo simulation. This tech-
nique was used to simulate how removing detector fibers from a
DRS fiber-optic probe design would affect the recovery of opti-
cal properties. As will be shown in Sec. 3, simulations indicated
that the close proximity of detector fibers to the edge of the
probe invalidated the assumption of a uniform refractive
index at the tissue surface. This is a common assumption
when modeling reflectance in tissue23,37,38 and is necessary

Table 1 Optical properties of brain tissue (Ref. 36).

Tissue λ (nm) μa (mm−1) μ 0
s (mm−1)

White matter 360 0.31 2.34

630 0.02 0.99

950 0.04 0.61

Gray matter 360 0.23 12.30

630 0.08 6.54

950 0.10 3.60
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for the spatial invariance required by the Mono Monte Carlo
method. This motivated the development of a modified algo-
rithm for the recovery of optical properties from DRS data,
one that considers the true geometry of the probe and, most
importantly, the different refractive indices encountered by pho-
tons leaving the tissue surface (described in Sec. 2.5).

To test the validity of these Monte Carlo methods, results of
the basic Monte Carlo code were compared with those from the
MCML code published by Wang et al.23 and the results of dif-
fusion theory calculations. The extended source diffusion theory
model described by Farrell et al.37 was used.

2.2 Optical Property Recovery from the Results of a
Single Monte Carlo Simulation

An inverse Monte Carlo algorithm was used to recover optical
properties from SR-DRS spectra. This algorithm uses the iter-
ative Marquardt–Levenberg curve-fitting routine to fit Monte
Carlo–generated spatial reflectance curves to experimental
data (in this work, simulated data were used in place of exper-
imental data). Since running repeated Monte Carlo simulations
is prohibitively slow, a Mono Monte Carlo technique was used,
based on the condensed simulation approach introduced by
Graaff et al.24 and adapted by others.25,38

This approach used a single reference simulation with optical
properties μaref and μ 0

sref to determine the number of interactions
of each photon within the medium. In such a simulation, chang-
ing the scattering coefficient only affects the path lengths fol-
lowed by photons between interactions. For this reason, the
results of a single Monte Carlo simulation can be applied for
a sample with new optical properties so long as the distances
in the original simulation can be scaled and the new albedo c ¼
μs∕ðμa þ μsÞ is less than or equal to cref , the albedo of the refer-
ence simulation.24

The reference simulation was run for 2 × 109 photons with
optical properties μaref ¼ 0 and μ 0

sref . Note that any value of μaref
could be used, but setting the absorption to 0 guaranteed that cref
was always higher than or equal to c. Upon exiting the tissue,
each photon was binned in a grid location defined by ρref, the
photon’s radial distance from the source, and nscat, the number
of scattering events it experienced while travelling through the
tissue. This provided a table of the reflectance Rref at discrete
values of ρref and nscat as illustrated in Fig. 1.

This grid could then be used to determine the reflectance for
a sample with optical properties μa and μ 0

s by applying Eq. (1).
First, each value of Rref was multiplied by the new albedo raised
to the power of nscat. This could be done since the albedo pro-
vides a measure of the fraction of photons that are scattered out
of a collimated beam in one path length. The grid was then col-
lapsed down to one dimension by taking the sum along each
column.

RðρÞ ¼
X
nscat

Rref

�
ρ ·

�
μt

μtref

�
; nscat

�
·

�
μs

μa þ μs

�
nscat

: (1)

The reflectance at a given source–detector distance (SDD)
RðρÞ could be found after first scaling the distances in the col-
lapsed grid by the ratio of the new mean free path (1∕μt) to the
mean free path used in the reference simulation (1∕μtref ).
Because scoring was performed radially, the boundaries of
each bin were concentric circles around a central (source)
point. The scaling procedure moved the boundaries of the

bins inward or outward and therefore changed the bin positions
and widths (areas). To compensate for this, each extracted
reflectance value was normalized by the total area of the scaled
bin in which it was scored. This area was found by subtracting
the area of the circle defined by the inner boundary from the area
of the circle defined by the outer boundary.

Values of ρ were used that corresponded to the positions of
optical fibers in a DRS probe, and extracted spatial reflectance
curves were fitted to SR-DRS data using the Marquardt–
Levenberg curve-fitting algorithm. When used with experimen-
tal reflectance data, this inversion procedure allows determina-
tion of the optical properties of a measured sample.

2.3 Reducing the Probe Size

Practically, to allow ease of use in small surgical cavities, the
diameter of the fiber-optic probe will be kept quite small.
This meant that any data being fitted could contain only a
few short SDDs near the front of a radially resolved reflectance
curve. A simulation-based procedure was used to observe the
precision in the recovered optical properties as the outermost
SDD was reduced.

To do so, a low noise reflectance curve was generated (using
Monte Carlo methods), and random Gaussian noise was added
with standard deviations of 5, 10, and 15% commensurate with
experimental conditions observed during preliminary investiga-
tions. These data were fitted using the Mono Monte Carlo
method to recover μa and μ 0

s. This was repeated 1000 times,
and the standard deviation in the recovered optical properties
was determined. Previous investigations suggested that one
thousand repetitions were sufficient to ensure that the uncertain-
ties in the results approached their limiting values. This entire
process was repeated as the maximum radial distance was
reduced, for various input optical properties. In these simula-
tions, reflectance data were generated at evenly spaced distances
of 0.3 mm, corresponding to typical fiber diameters.

Reducing the maximum SDD in the probe had the additional
effect of changing the depth of tissue probed by reflectance mea-
surements. This was investigated by simulating a probe contain-
ing a single source and detector and placing the detector at
varying distances from the source. For any photon that was
eventually collected by the detector, its depth was recorded

Fig. 1 Photon scoring grid used to set up the Mono Monte Carlo
method. ρref is the radial distance from the source at which a photon
exited the tissue and nscat is the total number of scattering events the
photon experienced.
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each time it passed below a target radial distance. These results
were then used to find the average depth probed below a target
radial distance versus detector position.

2.4 True Probe Forward Monte Carlo Model

Because of its ability to recover the reflectance at arbitrary
SDDs, the Mono Monte Carlo method was effective for inves-
tigating how the number of fibers and their positioning affects
optical property recovery in a custom probe. However, certain
simplifying assumptions were required during the Monte Carlo
simulation. These included

1. A pencil beam photon source instead of a realis-
tic fiber.

2. Cannot use finite size detectors with typical accep-
tance angles.

3. A semi-infinite medium, which does not account for
refractive index variations due to different materials
at the surface.

To keep within the small diameter constraint while maximiz-
ing the outermost SDD, detector fibers were placed very close to
the outer edge of the probe. It was therefore expected that inho-
mogeneous boundary conditions (the difference in the refractive
index of the probe and surrounding air) would have an effect on
the reflectance. To investigate this effect, a forward Monte Carlo
model was developed, which explicitly simulates the true probe
design as closely as possible.

Each fiber was given a circular profile with a refractive
index of 1.46, a representative value provided by an optical
fiber manufacturer (CeramOptec Industries Inc., East
Longmeadow, MA). Each fiber used for diffuse reflectance mea-
surements was given a core diameter of 200 microns. This size
was chosen as a tradeoff between maximizing the SDD of the
outermost fiber and minimizing the required exposure time.
Larger fibers would reduce the maximum achievable SDD
and affect the performance of the optical property recovery algo-
rithm, while smaller fibers would require longer measurement
times to achieve an acceptable signal-to-noise ratio.

The source fiber was simulated by emitting photons ran-
domly at any point within its core, at any angle within its
numerical aperture. Similarly, only photons incident on a detec-
tor fiber core at a (refracted) angle within the numerical aperture
were scored by the model. Photons incident on the epoxy region
of the probe were removed from the simulation (absorbed by the
epoxy), while those reaching the tissue surface outside of the
probe diameter were reflected according to the Fresnel equations
at a boundary with mismatched refractive indices of 1.4 and 1.

The results of this true probe simulation were fitted using the
previously described Mono Monte Carlo method to see if it was
capable of recovering the input optical properties. This was done
over a range of optical properties.

2.5 Hybrid Reflectance Recovery Algorithm

To accurately model the reflectance that will be measured with
our probe design, a true probe Monte Carlo simulation is
required. Because it is not spatially invariant, however, such
a simulation cannot be used to generate the scoring grid in
the Mono Monte Carlo model, and therefore a new algorithm
for rapid generation of reflectance curves was required. One

possible solution would be to generate a two-dimensional
look-up table using the forward Monte Carlo model of
Sec. 2.4 over a range of μ 0

s and μa values. Achieving sufficient
resolution over the wide range of optical properties listed in
Table 1, however, would require a very large number of simu-
lations, and the time required to implement this was considered
impractical. Instead, a hybrid look-up table/Mono Monte Carlo
method was developed for rapid generation of reflectance
curves. This allowed the use of true probe simulations but
required fewer simulations than a pure look-up table approach.

The Monte Carlo simulations described in Sec. 2.4 were run
for selected values of μ 0

s, but with μa set to 0. Detected photons
were scored according to the detector in which they were col-
lected and xt, the total three-dimensional path length traversed
while in the tissue. Combining the results of these simulations
produced the three-dimensional grid shown in Fig. 2: the reflec-
tance in each detector for each different value of μ 0

sref and xt.
In a process similar to the one in Sec. 2.2, this grid could later

be used to recover the reflectance corresponding to a measure-
ment on a sample with arbitrary optical properties. The absorp-
tion coefficient of the sample was incorporated by applying
Eq. (2), thus collapsing the grid in one dimension. This created
a look-up table of the reflectance collected by each detector ver-
sus μ 0

sref . Finally, reflectance values were extracted from this
table by interpolating between μ 0

sref values by cubic splines.
This procedure is shown graphically in the Appendix.

RðμaÞ ¼
X
xt

RrefðxtÞ · e−μa·xt : (2)

In an experimental situation, the optical properties of a tissue
sample can be recovered by generating successive spatially
resolved reflectance curves with this algorithm and using
Marquardt–Levenberg curve-fitting to find the best fit to mea-
sured data. By changing the geometry used in the initial Monte

Fig. 2 The photon scoring grid used in the hybrid reflectance recovery
algorithm. A number of different simulations were run for different val-
ues of μ 0

s . Photons in each simulation were scored according to the
detector bundle in which they were collected and xt, the total three-
dimensional path length traveled in the tissue.
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Carlo simulations, this algorithm could be applied to any desired
probe design.

To ensure accuracy in reflectance curves generated with this
algorithm, a number of parameters were investigated and opti-
mized. Because photons were scored in discrete bins based on
the total path length, both the maximum path length scored and
the width of the bins (path length resolution) were parameters of
the model. Simulations were run in which photons were scored
at very high resolutions of 1 × 104 bins∕mm and maximum path
lengths of 150 mm. While these values would be impractical for
use in a final algorithm due to time and file size constraints, they
were used in initial investigations to allow for independent
evaluation of each parameter. The optical properties used
in these investigations were μa ¼ f0.01; 0.5g and μ 0

s ¼
f0.5; 13g. The four combinations of these values covered the
range of optical properties of brain tissue listed in Table 1.

The influence of the maximum path length (xm) was inves-
tigated by finding the total reflectance recovered for a series of
xm values and comparing this to the reflectance when the path

length was not limited. The path length resolution was investi-
gated by progressively summing the contents of adjacent bins to
simulate coarser binning. Finally, since each simulation used to
generate the grid was run with a different value of μ 0

s; the res-
olution in μ 0

s was another parameter of the model (the range was
previously defined as 0.5 to 13 mm−1). This resolution was pro-
gressively improved by running additional simulations and
observing plots of the total reflectance versus μ 0

s. This procedure
was continued until intermediate data points could be accurately
interpolated by cubic splines. The error in interpolation was esti-
mated by consecutively removing each point from the data
(except the endpoints) and interpolating for the value of the
missing data point.

2.6 Optical Property Recovery Performance

Using the Marquardt–Levenberg curve-fitting routine with abso-
lute reflectance data from the hybrid reflectance recovery algo-
rithm will allow recovery of μa and μ 0

s from measured SR-DRS
data. A simulation-based testing procedure was used to charac-
terize the precision of the optical property algorithm. The rela-
tive uncertainty (defined here as the standard deviation divided
by the mean of 1000 runs) in the recovered optical properties
was observed when simulated reflectance curves corrupted by
random noise were input to the algorithm.

3 Results and Discussion

3.1 Monte Carlo Model

Results of the comparison between our basic Monte Carlo
model, the MCML code,23 and diffusion theory are shown in
Fig. 3 for selected optical properties. It can be observed that
at short SDDs (Fig. 3 inset) the results are consistent with
MCML, while at longer distances, the results are consistent
with both MCML and diffusion theory.

3.2 Reduced Probe Size

The results of the investigation described in Sec. 2.3 (reducing
the probe diameter) are shown in Fig. 4, which plots the percent
uncertainty in the recovered optical properties versus the maxi-
mum SDD in the simulated probe design. These results indi-
cated that the presence of random noise in the reflectance
curves had a strong effect on the precision of the optical proper-
ties recovered by the Mono Monte Carlo algorithm. The relative

Fig. 3 Validation of Monte Carlo codes. Solid lines are spatially
resolved diffuse reflectance spectroscopy (SR-DRS) reflectance curves
generated using the Mono Monte Carlo method. Dots indicate the
results of the MCML code by Wang et al.23 Crosses show the results
of diffusion theory calculations using the extended source model
described by Farrell et al.37

Fig. 4 The percent uncertainty (standard deviation divided by the mean) in the value of the optical properties recovered from 1000 reflectance curves
corrupted by normally distributed random noise with a standard deviation of 5, 10, or 15% as indicated. Optical properties of μa ¼ 0.31 mm−1 and
μa ¼ 2.34 mm−1 were used to generate all initial reflectance curves.

Journal of Biomedical Optics 107004-5 October 2013 • Vol. 18(10)

Cappon et al.: Fiber-optic probe design and optical property recovery algorithm. . .



uncertainty in the recovered optical properties was found to
increase approximately linearly with the standard deviation of
the added noise and to vary approximately inversely with the
SDD of the outermost detector. Examination of Fig. 4 suggests
that, for the optical properties shown, an outermost distance
≥1.5 mm would demonstrate acceptable precision. This was
consistent with other simulations using different optical proper-
ties (data not shown). It can also be observed that at short SDDs,
the uncertainty in μa is significantly greater than μ 0

s. At short
SDDs, collected photons have experienced short path lengths
in tissue, and therefore the influence of small changes in μa
is insignificant.

The effect that reducing the maximum SDD had on the depth
probed by reflectance measurements is demonstrated by the
simulation results in Fig. 5. This shows the average depth
probed by photons as they passed below a radial distance of
0.89 mm when the detector was placed at various SDDs.

Using these data alongside other practical constraints, a
design with three detectors placed up to a maximum SDD of

1.67 mm was chosen for use in brain tissue. The furthest detec-
tor was placed near to the outer edge of the probe to maximize
its SDD, and the diameter of the probe was limited to <2 mm to
allow easy manipulation in a small surgical cavity.

Multiple detector fibers were placed at each SDD, and their
outputs were bundled together to improve the photon collection
efficiency. More fibers were placed in bundles at further SDDs
to help compensate for the decreased signal at these distances.
The design chosen for the probe is shown in Fig. 6, and the rel-
ative signal strength collected by each detector bundle is shown
in Table 2.

A 0.4-mm diameter fiber was included in the probe design
for future use in a combined diffuse reflectance/time-resolved
fluorescence instrument. Although photons entering this fiber
were not scored during Monte Carlo simulations, its presence
was considered because it altered the reflectance profile of
the probe due to a difference in the index of refraction of the
fiber and the surrounding probe surface.

3.3 Boundary Effects

The consequences of ignoring the change in refractive index at
the probe’s edge (boundary effects) are demonstrated in Fig. 7.

Fig. 5 The influence of the source to detector distance on the depth of
tissue probed by DRS. The average depth of tissue probed below a
radial distance of 0.89 mm is shown for optical properties of
μa ¼ 0.31 mm−1 and μa ¼ 2.34 mm−1.

Fig. 6 The proposed design for the fiber optic probe. DRS detector fibers
are bundled together into three groups, each at the indicated distance
from the DRS source fiber (measured from the centers of each fiber). The
central fiber is used for both illumination and detection in time-resolved
fluorescence spectroscopy measurements.

Table 2 Relative signal strength in each of the outer two diffuse reflec-
tance spectroscopy detector bundles of the probe shown in Fig. 6,
obtained through Monte Carlo simulations. This was defined as the
total reflectance (photons per unit area) collected in all fibers of the indi-
cated bundle divided by the total reflectance in the detector bundle
0.23 mm from the source.

Tissue λ (nm)
½Rð0.59 mmÞ�∕
½Rð0.23 mmÞ�

½Rð1.67 mmÞ�∕
½Rð0.23 mmÞ�

White matter 360 0.337 0.024

630 0.547 0.213

950 0.526 0.236

Gray matter 360 0.073 5 × 10−4

630 0.179 0.008

950 0.304 0.023

Fig. 7 The effects of boundary conditions on optical property recovery
with the Mono Monte Carlo algorithm. The solid line is the reflectance
curve predicted by the Mono Monte Carlo model for optical properties
of μa ¼ 0.02 mm−1 and μ 0

s ¼ 0.99 mm−1. Points marked with an “x”
show the reflectance predicted by the true probe forward Monte
Carlo model for the same optical properties. The dotted line is the fit
generated with the Mono Monte Carlo algorithm, which corresponds
to optical properties of μa ¼ 2.8 × 10−6 mm−1 and μ 0

s ¼ 1.0 mm−1.
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These results show that although the Mono Monte Carlo algo-
rithm was able to generate a good fit to the (simulated) true
probe reflectance, this fit corresponds to incorrect optical proper-
ties. This analysis was performed over a range of optical proper-
ties, and results are listed in Table 3. The discrepancies between
the target and recovered absorption coefficients in Table 3 show
the strong influence of boundary effects on this probe design.
This motivated the development of a new optical property recov-
ery algorithm, one that considers the true geometry of the probe
surface. This algorithm was described in Sec. 2.5.

3.4 Parameter Optimization: Hybrid Reflectance
Recovery Algorithm

Selected results from the investigation of the maximum path
length parameter are shown in Fig. 8. It was found that for
path lengths <150 mm, the reflectance in each detector reached
>99% of its maximum value, the total when the path length was
not limited. This was true for all investigated optical properties
(data not shown), and therefore 150 mmwas chosen as the maxi-
mum path length to record in all simulations.

Table 3 The effects of boundary conditions on the Mono Monte Carlo algorithm’s ability to recover optical properties.

Tissue λ (nm)

Target optical
properties (mm−1)

Recovered optical
properties (mm−1) Percent difference

μa μ 0
s μa μ 0

s μa μ 0
s

White matter 360 0.31 2.34 0.29 2.39 −6.45 2.17

630 0.02 0.99 2.9 × 10−6 1.00 −99.98 1.54

950 0.04 0.61 0.02 0.62 −39.40 1.54

Gray matter 360 0.23 12.30 0.23 11.96 −0.92 −2.79

630 0.08 6.54 0.05 7.12 −31.86 8.90

950 0.10 3.60 0.08 3.73 −23.75 3.53

Note: The “Target optical properties” were used to generate reflectance curves with a model that simulates the probe boundary. “Recovered optical
properties” are the values returnedwhen fitting this simulated data with a model that does not consider boundary conditions. Source–detector distances
of 0.23, 0.59, and 1.67 mm were used.

Fig. 8 Investigation of the maximum path length parameter for simulations with optical properties of (a) μa ¼ 0.01 mm−1, μ 0
s ¼ 13 mm−1 and (b)

μa ¼ 0.5 mm−1, μ 0
s ¼ 0.5 mm−1. Each curve corresponds to a simulated detector bundle with the indicated source-to-detector distance. NpðxÞ is

the number of photons collected that traveled a total path length equal to x. Npref is the total number of photons collected for each source–detector
distance (SDD) when the path length was not limited.

Fig. 9 The reflectance recovered using the method described in Sec. 2.5 for each detector bundle in the probe layout of Fig. 6. Results are shown over a
range of desired μ 0

s values, with μa ¼ 0.01 mm−1 (a) and 0.5 mm−1. (b) Data points indicate the μ 0
sref values used to generate the grid and the lines are

the results of interpolation by cubic splines. The error in each data point was <2%.
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Investigation of the path length resolution parameter showed
that when it was decreased to 13 bins/mm, the simulated reflec-
tance remained within 1% of the reflectance at 1 × 104 bins∕
mm. This was true across the range of investigated optical prop-
erties, and therefore a path length resolution of 13 bins∕mmwas
selected for xt. Since the maximum path length recorded was
150 mm, 1950 path length bins were used in total.

The resolution in μ 0
s is shown in Fig. 9 for μa ¼ 0.02 and

0.5 mm−1. The error in each point was found to be <2%
when the resolution in μ 0

s was set to 0.5 mm−1.

3.5 Optical Property Recovery Performance

Results characterizing the precision of the optical property
recovery algorithm are shown in Fig. 10. All reflectance data
used in the fitting procedure corresponded to the probe design
of Fig. 6. As expected, the highest uncertainty in the results
occurs when recovering the absorption coefficient from data cor-
responding to low μa values. This is a consequence of using a
probe with short SDD values; the algorithm is less sensitive to
changes in μa than μs. This is especially true for tissues with
very low absorption because of the shape of the corresponding
reflectance curve.

4 Conclusion
Monte Carlo simulations were used to determine the minimum
diameter of a fiber-optic probe meant for the recovery of optical
properties from spatially resolved diffuse reflectance spectra.
This was investigated over the wide range of optical properties
expected in brain tissue, and the minimum diameter was found
to be 1.5 mm. It was discovered that for small probe designs in
which detector fibers are placed close to the edge, the true geom-
etry of the probe must be simulated and the different refractive
indices at the tissue surface must be considered. A hybrid look-
up table/Mono Monte Carlo algorithm was developed to effi-
ciently generate reflectance data that account for the true geom-
etry of the probe. Fitting these data to measured SR-DRS data
will allow optical property recovery in brain tissue.

These methods were used to develop a novel, small-diameter
fiber-optic probe design for use in a DRS instrument.
Simulations with expected signal-to-noise ratios indicated
acceptable performance across the range of optical properties
of brain tissue. Although the data presented here are for a spe-
cific probe design, the algorithm could be readily adapted for
any desired probe geometry. The algorithm is compatible
with small-diameter probes that are easy to manipulate in sur-
gical cavities.

Fig. 10 Performance of the optical property recovery algorithm when presented with simulated reflectance curves corrupted by random noise with a
standard deviation of 5%. The values on the x and y axes are the target optical properties, while the contour lines represent the relative uncertainty in
the recovered optical properties, defined as the standard deviation of the results divided by the mean over 1000 runs.

Fig. 11 The true probe inverse reflectance recovery process. (a) The grid is collapsed in one dimension by applying Eq. (2) to incorporate the target μa
value. (b) The target value of μ 0

s is incorporated by interpolating between μ 0
sref values, thus collapsing the grid further. (c) The expected reflectance

collected by each detector when performing a measurement on a sample with optical properties μa and μ 0
s .
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Appendix: Reflectance Recovery Example
Aworked example showing the process of recovering the reflec-
tance from the true probe simulating grid is shown in Figs. 11
and 12 for optical properties of μa ¼ 0.01 and μ 0

s ¼ 0.75mm−1.
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