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Abstract—State-of-the-art image sensor arrays have not been
able to operate at frame rates that exceed tens to hundreds of
thousands of frames per second. The main bottle neck preventing
imaging at higher frame rates is the time required to access the
array, convert the image data from analog to digital, and transmit
the data off the image sensor chip. The later is considered the
most significant source of delay, mainly due to the limited number
of input and output ports available on the chip. This work allows
for a significant increase in image capture rate by separating the
image acquisition phase from the conversion and readout phase.
This was done by capturing eight frames at a high capture rate
and temporarily storing the multiple frames into analog memory
units that are incorporated inside the pixel. The design was im-
plemented in a deep-submicron CMOS 130 nm technology that
allows for high-speed operation. This paper discusses the tradeoffs
of using in-situ frame storage and gives some recommendations.

Index Terms—Active-pixel-sensor, biomedical imaging, image-
sensor, photodetectors, smart-pixel, ultrahigh-speed.

I. INTRODUCTION

H IGH-SPEED imaging has gained significant research in-
terest due its wide range of applications, such as integral

machine vision, time-of-flight imaging, topographic imaging,
three-dimensional high-definition television (3D-HDTV), and
optical molecular imaging systems, specifically fluorescence
life-time imaging (FLIM) [1]. Deep submicron CMOS tech-
nology downscaling has especially made such high-speed
imaging possible. One of the main advantages of CMOS
image sensors is that they are fabricated in standard CMOS
technologies, which allows for full integration of the image
sensor along with the processing and control circuits on the
same chip, leading to a reduction in power consumption, cost
and overall size of the imager. Most importantly, however,
CMOS downscaling has allowed for integration of new sensor
functionalities, by the design of smart pixels [2]. Such smart
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Fig. 1. (a) Schematic diagram of the ultrahigh-speed in-situ APS containing
eight memory elements and 38 transistors and (b) layout screen capture of a
single pixel with a 9% fill-factor designed using a CMOS ���� �� technology
kit from IBM [16]. The low 9% FF is comparable to smart pixel designs such
as the digital pixel sensors in [7]. The photodiode used is an � � ��-well with
a guard ring for high-speed operation.

pixels truly utilize the potential of CMOS technology for
imaging applications enabling CMOS imagers to achieve the
image quality and global shuttering performance necessary to
meet the demands of ultrahigh-speed applications.

Based on a comparison of some of the high-speed imagers in
the literature [3]–[15], it is clear that moving to frame rates (FR)
higher than 10 000 fps would require completely separating the
acquisition and processing phases by relying on in-situ frame
storage [1]. In this work, results from an ultrahigh-speed CMOS
pixel that can capture eight frames using in-situ frame storage
are presented. Full details of the pixel design are discussed, as
well as the pixel measurement results with comparison to the
calculated signal-to-noise ratio (SNR).

The paper is organized as follows. In Section II, the design
and simulation results of the ultrahigh acquisition rate CMOS
active-pixel sensor (APS) are discussed. The pixel measurement
results are presented in Section III, while the calculated and
measured SNRs are shown in Section IV. The scalability of the
design is shown in Section V, which is followed by the conclu-
sions in Section VI.

II. ULTRAHIGH-SPEED PIXEL DESIGN

The schematic diagram and the layout of the pixel, which con-
tains 38 transistors, are shown in Fig. 1 [16]. The basic idea
is to utilize eight analog memory units in-situ to temporarily
hold eight frames at a very high acquisition speed, avoiding
the delay time in analog-to-digital conversion and readout. The
write switches (WT) that select which storage element to use
also serve as global shutters. The storage elements to
were implemented using MOS capacitors to reduce layout area;
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Fig. 2. (a) Photomicrograph of the ultrahigh-speed camera-on-a-chip fabri-
cated in a 130 nm CMOS technology and (b) measured APS output voltage
at different illuminations ��� � �� � ��� using a 10 ns reset pulse.

they have a capacitance of 60 fF and were designed using thick-
oxide (5.2 nm) transistors to reduce leakage.

In [1], we have shown simulation results of the ultrahigh-
speed APS to test the electrical limit. The eight frames were ac-
quired within roughly 7 ns, making this imaging technique suit-
able for fluorescence lifetime imaging. If repeated experiments
were needed for low-light level measurements, the consecutive
frames can be accumulated in the capacitor without clearing the
previous frames. The amount of light required to generate the
simulated voltage drop depends on the light sensitive device
used. It is recommended to use an avalanche photodiode or a
single photon detector for best sensitivity.

III. PIXEL MEASUREMENT RESULTS

A complete-camera-on-a-chip design occupying an area
of , shown in Fig. 2(a), was fabricated with
an array of 32 32 ultrahigh-speed pixels. In addition to the
row and column scanners that are needed for array access,
this imager required an on-chip implementation of high-speed
clocking and conversion circuitry. This circuitry includes a
read sequencer, write pulse generator (WPG), high-speed ADC
and on-chip voltage controlled oscillator (VCO) to generate the
high-speed clocks. The VCO is a cross-coupled negative-
3-GHz oscillator, which clocks the ADC and the write pulse
generator circuits. The Read circuit is a shift register that is
clocked externally to provide the control signals to the pixels.
This was done to reduce the number of I/O pads needed.

Since the image capture rate is very high, the photodiode reset
and analog memory write pulses cannot be provided externally.
Rather, they are generated internally and initiated by an external
start signal. The triggering is done using an edge-triggered cir-
cuit that accepts an external start signal as an input. When the
start pulse occurs, the circuit generates the 8 reset pulses and the
8 write signals between the reset pulses that have a width of 400
ps each (controlled by the clock).

The implemented ADC uses a high-speed dual-slope inte-
grating method with a ramp resistor and capacitor equal to
and 2 pF, respectively. The ADC is clocked by the on-chip 3
GHz VCO and uses an 8-bit counter for a maximum conversion
time that requires 128 ns. The calculated frame rate is 7629 fps.

The output of the APS pixel, shown in Fig. 2(b), was mea-
sured by controlling one of the memory elements. In this case,

Fig. 3. Measured APS output voltage for different illuminations showing both
a single sample measurement and the envelope of 256 samples.

and were turned on, while all other switches were
turned off. An active low reset pulse was applied to the PMOS
reset transistor with a pulse duration of 10 ns. The figure shows
how the response changes with increasing the light intensity
and the measurement shows how the pixel responds well to a
high-speed reset pulse.

IV. SNR RESULTS

There are a number of noise sources in an APS pixel. A good
estimate for the amount of noise available at the output of the
APS is obtained by recording the output voltage for 256 mea-
surements. In Fig. 3, these measurements are overlapped with a
single sample measurement for comparison. It can also be seen
that the noise increases with integration time, which is mainly
due to the integration noise, as will be shown by (1). The dom-
inant noise during the reset phase is the thermal noise from the
on-resistance of the reset transistor. The thermal noise voltage

depends on the diode capacitance and temperature,
but not on the on-resistance of the transistor. This is because
although the increase in on-resistance results in an increase in
thermal noise voltage, it also results in a reduction in bandwidth,
which cancels out. To achieve soft reset, an NMOS reset tran-
sistor rather than a PMOS can be used to reduce the thermal
noise by [14]: however, soft reset can lead to image
lag from frame to frame [17]. During the integration phase, the
dominant noise is shot noise due to the dark current and
the photocurrent . Assuming that the photodiode capaci-
tance is constant over the integration period , the
noise voltage at the end of the integration time is given by

(1)

The noise sources available in this APS structure are similar
to the standard 3T-APS in terms of reset noise and integration
noise. However, the readout noise is different since there is a
transfer from the photodiode to the storage capacitor phase, as
well as a transfer from the storage capacitor to the column phase
(Fig. 4).
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Fig. 4. (a) Photodiode to storage capacitor readout equivalent circuit and
(b) storage capacitor to column readout equivalent circuit.

Fig. 5. Measured and calculated SNR for three different illuminations. The
inset figure shows a close up to S3 illustrating that the SNR drops beyond
saturation.

The readout noise for Figs. 4(a) and 4(b) can be calculated
based on the following two equations, respectively, assuming
constant and capacitors:

(2)

The SNR can be calculated by summing up the noise sources
from the three equations. The SNR was measured using 83 sam-
ples and plotted as a function of the integration time for three
different light powers. Fig. 5 shows a comparison between the
calculated and measured SNR, showing the standard error bars
for three of the samples. The maximum SNR is around 45 dB,
which is a property of the pixel and is achieved at a specific inte-
gration time that depends on the power of the incident light. The
inset figure shows that the SNR decreases beyond the saturation

Fig. 6. Measured storage capacitor leakage of the ultrahigh-speed APS.

Fig. 7. Simulation results of the maximum leakage from storage capacitor 1 in
pixel (0,0), to storage capacitor 8 in pixel ���� �, for ��� and �� ����
readout architectures with 8-bit resolution ADCs, four 8-bit parallel outputs and
a 	 � ��� ��, for a clock rate of 50 MHz �	 � �	 ���.

point of the pixel, which happens since the signal no longer in-
creases while the noise increases mainly due to shot noise that
is a function of the integration time.

V. DESIGN SCALABILITY

The limitation on the scalability of this design depends on
the array readout time since the storage capacitors can leak
their charge. The leakage of the storage capacitor was measured
by applying a short reset period, followed by a short write
period ( is on), and then turning the write switch off,
while keeping the read switch on the whole time. Fig. 6
shows the measured storage capacitor leakage rate, which was

.
Fig. 7 shows the maximum leakage based on the FR calcula-

tions using the following equations:

(3)

(4)

where and are the pixel-by-pixel and the
per-column ADC array readout techniques, respectively. and

are the number of rows and columns in the array, respectively,
is the time it takes the ADC to complete one conversion,

is the time it takes the chip I/O to send out the converted
digital result, is the number of digital bits, and is the number
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of parallel outputs. Assuming a 100 mV acceptable drop, using
a PBP readout architecture would limit the resolution to an array
of roughly 32 32, whereas, a PC-ADC readout would be lim-
ited to an array size of roughly 168 168.

VI. CONCLUSION

We have demonstrated the feasibility of using in-situ frame
storage for ultrahigh-speed CMOS imaging. Based on simula-
tion results, the pixel can achieve an electrical image capture
rate of 1.25 billion fps, which is reasonable since the transistors
used are operated well below their cutoff frequency limit, and
in a range where the IBM simulation models are accurate. How-
ever, this limit was not achievable experimentally with a regular
photodiode due to the high illumination intensity required. The
sensor used can achieve a speed of 1 million fps. For higher
frame rates, we recommend using a high sensitivity light sensor
such as a single photon detector with the pixel. Also, if a large
array is needed, low leakage storage elements are necessary.
We recommend using low-leakage metal-insulator-metal capac-
itors; however, the fill-factor will be decreased.
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