Techniques in Molecular Genetics

Protein and Enzyme Assays

H.E. Schellhorn

Day 5

- Test
- Discussion of Gels from yesterday
- Protein Assay/ Enzyme Assay
- Electron Microscopy (Klaus Schultes)
- Tissue Culture (Alison Cowie)
- Rotation Schedule
- Chemical Waste Assignment

Enzyme Assay for Acid Phosphatase

- 6.6 Enzyme assay for acid phophatase activity
- (Modified from (Dassa et al, 1982): http://www.jbc.org/cgi/reprint/257/12/6669)
- Protocols
- Prepare sample extract
 - Inoculate overnight cultures of WT and rpoS mutant in 10 ml LB and growth at 37oC
 - Collect cells by centrifugation at 4,000 rpm for 10 min
 - Discard supernatant and resuspend pellet in 10 ml LB 20mM Phosphate buffer (pH7.0) (Pi buffer), ice cold.
 - Spin down the cells at 4,000 rpm for 10 min
 - Repeat steps 3 and 4 two more times
 - Discard supernatant and resuspend pellet in 1 ml Pi buffer
 - Transfer 0.5 ml to 15 ml Falcon blue cap tube, and save the other 0.5 ml on ice
 - Sonicate until cultures turn clear (less than 5 min)
 - Transfer crude extracts to 1.5 ml Eppendorf tubes and spin down at 13,000 rpm for 10 min
 - Carefully transfer the supernatant to clean 1.5 ml tubes
 - Quantify protein concentration using Bradford assay

Enzyme assay

- Prepare reaction buffer containing: 250 mM glycine/HCl buffer with 25 mM p-nitrophenylphosphate (PNPP)
- Prepare 3 tubes, labelled with (1. Control 2. WT 3. rpoS)
- Add 0.5 ml reaction buffer into each tube
- Incubate all three tubes in water bath at 37oC for 2 min to equilibrate
- Start the reaction by adding 20 µl cell extract (if the protein concentration is higher than 1 mg/ml) of WT and rpoS to tube 2 and 3, respectively.
 Add 20 µl of Pi buffer to control tube 1
- Incubate at 37oC for 15 min and stop the reaction by adding 1 ml of 1N NaOH
- Transfer 1 ml reaction mixture to cuvette to measure absorbance at 410 nm

Calculation of activity

- One unit of enzyme is defined as the amount of acid phosphatase required to release 1 nmol of PNPP/min under the above defined conditions (At 25 mM, the no enzyme rate of PNPP hydrolysis was 0.49 nmol/min/ml)
- Alternatively, one unit of enzyme was defined as 1,000 X A410 per minute per ml (Atlung et al. 1989)

Acid Phosphatase

Expression of acid phosphatase (AP), encoded by the appA gene, is RpoS dependent. You will test AP activity in cell extracts prepared from wild type and rpoS mutant strains of *Escherichia coli*.

Replication

- Biological Replication (experiment error)
 - Replication of the EXPERIMENTAL UNIT
 - Use at least 3 replications
 - Contributes to statistical experimental error
 - e.g. three independently prepared cell extracts
- Technical Replication (sampling error)
 - Repeated sampling of the same EXPERIMENTAL UNIT
 - Can use two replicates
 - Does not contribute statistical experimental error
 - e.g. two measurements of the same cell extract.
 - Technical Error (within EU error) is usually much smaller than Biological Error (between EU error)

Replication

- All assays should be replicated. All published experiments must be performed several times.
- Types of Replication
 - Biological Replication
 - Technical Replication

Enzyme Assay for Acid Phosphatase

6.6 Enzyme assay for acid phophatase activity

(Modified from (Dassa et al, 1982): http://www.jbc.org/cgi/reprint/257/12/6669)

Protocols

Prepare sample extract

Inoculate overnight cultures of WT and *rpoS* mutant in 10 ml LB and growth at 37oC Collect cells by centrifugation at 4,000 rpm for 10 min

Discard supernatant and resuspend pellet in 10 ml LB 20mM Phosphate buffer (pH7.0) (Pi buffer), ice cold.

Spin down the cells at 4,000 rpm for 10 min

Repeat steps 3 and 4 two more times

Discard supernatant and resuspend pellet in 1 ml Pi buffer

Transfer 0.5 ml to 15 ml Falcon blue cap tube, and save the other 0.5 ml on ice

Sonicate until cultures turn clear (less than 5 min)

Transfer crude extracts to 1.5 ml Eppendorf tubes and spin down at 13,000 rpm for 10 min

Carefully transfer the supernatant to clean 1.5 ml tubes

Quantify protein concentration using Bradford assay

(this has been done for you..)

Enzyme Assay for Acid Phosphatase

6.6 Enzyme assay for acid phophatase activity

(Modified from (Dassa et al, 1982): http://www.jbc.org/cgi/reprint/257/12/6669)

Enzyme assay

Prepare reaction buffer containing : 250 mM glycine/HCl buffer with 25 mM *p*-nitrophenylphosphate (PNPP)

Prepare 3 tubes in , labelled with (1. Control 2. WT 3. rpoS)

Add 0.5 ml reaction buffer into each tube

Incubate all three tubes in water bath at 37oC for 2 min to equilibrate

Start the reaction by adding 20 µl cell extract (if the protein concentration is higher than 1 mg/ml) of WT and rpoS to tube 2 and 3, respectively. Add 20 µl of Pi buffer to control tube 1

Incubate at 37oC for 15 min and stop the reaction by adding 1 ml of 1N NaOH

Transfer 1 ml reaction mixture to cuvette to measure absorbance at 410 nm

Calculation of activity

One unit of enzyme is defined as the amount of acid phosphatase required to release 1 nmol of PNPP/min under the above defined conditions (At 25 mM, the no enzyme rate of PNPP hydrolysis was 0.49 nmol/min/ml)

- Alternatively, one unit of enzyme is defined as 1,000 X A₄₁₀ per minute per ml (Atlung et al. 1989)
- Molar extinction coefficient for p-nitrophenol = 17.700 x 10³ M⁻¹ cm⁻¹ (this has been incorporated into the general spreadsheet I will give out

Calculations

- Prepare a table beforehand
- Label Tubes before doing experiment
- Use a spreadsheet table to record results.
- Put spreadsheet in labbook (raw and calculated data)

Calculations

- Prepare a table beforehand
- Label Tubes before doing experiment
- Use a spreadsheet table to record results.
- Put spreadsheet in labbook (raw and calculated data)

Calculations-Spreadsheet

- The general spreadsheet I will post will be slightly modified from the following sheets given in class.
- Features
 - Formats numbers and decimals properly
 - Calculates data
 - Organizes information including experimental details
 - Provides some quality control indicators
 - Graphs protein standard curve

Protein..

Bradfo	rd Prote	ein Assa	ıy (MIC	ROA	SSAY	′)	Date	5/8/2009 10	:08							
	-add water to st	andard tubes in tri	iplicate				User									
	-add protein sta	ndard volume to	each tube, use	a fesh tip fo	r each tube	total volun	ne)									
	-add Protein dye	e reagent (200ul) t	o each tube: al	low 15s bet	ween additio	ns										
	-mix thoroughly with a vortex mixer															
	-incubate at leas	st 5 min (preferabl	y 30min) and re	ead at 595 in	the same o	rder as prot	ein reagent addi	ition								
	Notes: (1) the	e "0" protein c	ontrol as it	is used fo	or both the	e standar	d curve and f	or background su	ıbtracti	ion (ma	ke sure cal	culated a	and measure	d value	es are in god	od agree
	(2) ma	ke sure that a	ll unknown v	alues fal	l in the lin	ear portio	n of the curv	eif not, dilute a	nd rea:	ssay						
		ossible, use C									B 14					
Standa	rd Curv	_		_	_						Bradtor	d Assay Si	tandard Curve	-		
Stanua	iu Cuiv	e								¹.000 Г				┑.	Regress	ion
									_ [0.900				┨.		
BSA Protein	Yolume of	Yolume of	Total	Ahs At	595 nm (tı	inlicate)	Ave. (595	Corrected	വ	0.800				┨.	Slope	#DIV/0!
(ug/mL)	Sample (ul)	Vater (ul)	(ul)	TIDS TIC		ipiloutej	nm)	Ave. (595 nm)	23	0.700					Intercept	#DIV/0!
0	0		800						_ ¥	0.600				┨.		
2			800						_ 8	0.500				┨.		
4			800						_ \ <u>\</u>	0.400				┨.		
6			800						_ 5	0.300						
8			800						_ Š	0.200						
10			800						_ <	0.100			u = 0	┥.		
									_	0.000	_	- #2	2 - #NVA	┛.		
									_	0		4 B'=6#N		12		
									_		Protein C	oncentra	tion (ug / ml	-) _		
Unknov	vn Sam	ples								•	Ave. (595 nm)	■ Cor	rected Ave. (595	nm)		
Sample	SampleID	Volume of	Volume o	Rea	dings	Average	Average	Protein Conc.								
Number	•	Sample	Water	Rep #1	Rep#2		-blank	(mg/mL)				- User ii	nput			
1												- Spread	dsheet calcu	lated s	values	
2												- Protei	in value wro:	ngche	eck standare	l curve
3																
4																
5																
6															_1	
7																

Enzyme..

General Enzyme Calculation Template

Date 5/8/2009 10:03

-determine protein concentration of samples using ProteinMicroassay or ProteinMicrotiterPlateassay sheet -determine activity of samples using standard curve calibration assay below to obtain Total Units per mL -divide Total Units per mL by Protein (mg/ml) to obtain specific acitivity

A Enzyme assay

- 2. Prepare reaction buffer containing: 250 mM glycine/HCl buffer with 25 mM p-nitrophenylphosphate (PNPP)
- 3. Prepare 3 tubes, labelled with (1. Control 2. WT 3. rpoS)
- 4. Add 0.5 ml reaction buffer into each tube
- 5. Incubate all three tubes in water bath at 37oC for 2 min to equilibrate
- 6. Start the reaction by adding 20 µl cell extract (if the protein concentration is higher than 1 mg/ml) of VVT and rpoS to tube 2 and 3, respectively. Add 20 µl of Pi buffer to control tube 1
- 7. Incubate at 37oC for 15 min and stop the reaction by adding 1 ml of 1N NaOH
- 8. Transfer 1 ml reaction mixture to cuvette to measure absorbance at 410 nm

Notes : (1) make sure that you perform linearity checks

- (2) use only determine unknown values with in the standard curve (do not extrapolate..dilute and re-assay instead)
- (3) biological replicates usually yields standard errors of less than 10% (5% is quite good). If yours is higher check your technique..

			Prote	Protein concentration			OD410 READINGS Share files, a program, or your de							B-gala	etosidas	Activita	(OD410)				Error	Flags
	Sample					Average	Time of			Sha	are files, a	program,	or your d	esktopar	ny time, ar	nywhere.	Average	TIME	SPECIFIC	Standard		
Sample	Type	Yolume	Rep1	Rep2	Rep3	Protein	Incubation	Re	p1	Re	p2	Re	р3	Rep 1	Rep 2	Rep 3	OD410	IIME	ACTIVITY	Error	5%	10%
		ul					(min)	sample1	sample2	sample1	sample2	sample1	sample2									
1																						
2																						
3																						
4																						
5																						
6																						
7																						
8																						
9																						
10																						
11																						
12																						
13																						
14																						
15																						
16																						
17									, and the second									, and the second				
18									, and the second									Ţ,		The state of the s		
19																		Ţ,		The state of the s		
20																						

Enzyme..

			Prote	in concen	tration				OD410 RI		B-galactosidase Activity (OD410)					
Sample	Sample Type	Yolume	Rep1	Rep2	Rep3	Time of Incubation	Rep1 R		Re	tep2 Rep3					Rep 3	Average OD410
		ul				(min)	sample1	sample2	2 sample1 samp		sample1	ample1 sample2				
1																
2																
3																
4																
5																
6																
7																
8																
9																
10																
11																
12																
13																
14																
15																
16																
17																
18																
19																
20																