

Here are some other works based on golden rectangle proportions...

Graphs as a form of art...

Graphs are essentially alternative representations of data and can be optimized for particular applications-aesthetics as well as accuracy are important.
Vertical graphs can be used to show changes in magnitude of response for relatively small numbers of sample point while horizontal graphs are better suited for large numbers of sample points.
The golden rectangle (look it up...) is regarded as a good starting point for graph proportions.

The purpose of this tutorial is to show how data can be plotted as a "publication quality" figure. Most spreadsheet programs can produce very good results but the default settings (graph type, symbol type etc.) must be changed. The default settings are really designed for business graphics and are thus not applicable for representing scientific data The following example illustrates some of the changes...

Growth dependent gene expression in Minimal Media..

- In this example we will plot two data (Enzyme activity, OD600) against time using two y scales.
- Although Excel is used in this example, similar results can be obtained using other spreadsheet programs...

Insert a chart into the spreadsheet...

Pick the appropriate chart type

Inserting a chart into the spreadsheet.. there many types of graph available but you should choose "XY" for most purposes. "Line" graphs, are not appropriate for plotting quantitative Y variables against quantitative X variables"
 ountitive Y variables

Biology 4x×3-2009

Insert the graph into the spreadsheet...

9

Add labels to the graph...

So in this case, we will choose an "XY" graph..

8

Add a meaningful title...

Graph title

Change the default symbols to ones that are more commonly used...

The default colors and symbols used in both Excel and Quattro Pro are not suitable for scientific publication and must be modified. Use open and filled circles and squares...

Compare these symbols to those used in the previous slide....

16
$\because: 8:$ $\because \because B^{\circ}$ $\because \because: \%$

Several elements of this basic graph must still be changed...

Since bacterial growth is exponential, it is best represented on a log scale....

Change OD600 to exponential scale...

21
| $\because \because$ And the line weighting and tick marks must be modified... $:$

Note the change of scaling of elements in the final figure

22

The final figure....

(A bit fuzzy because it is a screen capture) This graph might be further improved by adding minor tics, increasing title font size and/or adding enzyme units

