## **Techniques in Molecular Genetics**

### **Protein and Enzyme** Assays

### H.E. Schellhorn

# Day 4

- Protein&EnzymeAssays
- Start SDS Gels
- Immuno (Western) Blotting

## **Enzyme Assay for Acid Phosphatase**

- 6.6 Enzyme assay for acid phophatase activity
- (Modified from (Dassa et al, 1982) : http://www.jbc.org/cgi/reprint/257/12/6669)
- Protocols

- Prepare sample extract
  - Inoculate overnight cultures of WT and *rpoS* mutant in 10 ml LB and growth at 37oC
  - Collect cells by centrifugation at 4,000 rpm for 10 min
  - Discard supernatant and resuspend pellet in 10 ml LB 20mM Phosphate buffer (pH7.0) (Pi buffer), ice cold.
  - Spin down the cells at 4,000 rpm for 10 min
  - Repeat steps 3 and 4 two more times
  - Discard supernatant and resuspend pellet in 1 ml Pi buffer
  - Transfer 0.5 ml to 15 ml Falcon blue cap tube, and save the other 0.5 ml on ice
  - Sonicate until cultures turn clear (less than 5 min)
  - Transfer crude extracts to 1.5 ml Eppendorf tubes and spin down at 13,000 rpm for 10 min
  - Carefully transfer the supernatant to clean 1.5 ml tubes
  - Quantify protein concentration using Bradford assay
- Enzyme assay
  - Prepare reaction buffer containing : 250 mM glycine/HCl buffer with 25 mM p-nitrophenylphosphate (PNPP)
  - Prepare 3 tubes, labelled with (1. Control 2. WT 3. rpoS)
  - Add 0.5 ml reaction buffer into each tube
  - Incubate all three tubes in water bath at 37oC for 2 min to equilibrate
  - Start the reaction by adding 20 μl cell extract (if the protein concentration is higher than 1 mg/ml) of WT and rpoS to tube 2 and 3, respectively. Add 20 μl of Pi buffer to control tube 1
  - Incubate at 37oC for 15 min and stop the reaction by adding 1 ml of 1N NaOH
  - Transfer 1 ml reaction mixture to cuvette to measure absorbance at 410 nm

#### Calculation of activity

- One unit of enzyme is defined as the amount of acid phosphatase required to release 1 nmol of PNPP/min under the above defined conditions (At 25 mM, the no enzyme rate of PNPP hydrolysis was 0.49 nmol/min/ml)
- Alternatively, one unit of enzyme was defined as 1,000 X A410 per minute per ml (Atlung et al. 1989)

# **Acid Phosphatase**

Expression of acid phosphatase (AP), encoded by the appA gene, is RpoS dependent. You will test AP activity in cell extracts prepared from wild type and rpoS mutant strains of *Escherichia coli*.

# Replication

### - Biological Replication (experiment error)

- Replication of the EXPERIMENTAL UNIT
- Use at least 3 replications
- Contributes to statistical experimental error
- e.g. three independently prepared cell extracts

### Technical Replication (sampling error)

- Repeated sampling of the same EXPERIMENTAL UNIT
- Can use two replicates
- Does not contribute statistical experimental error
- e.g. two measurements of the same cell extract.
- Technical Error (within EU error) is usually much smaller than Biological Error (between EU error)

# Replication

- All assays should be replicated. All published experiments must be performed several times.
- Types of Replication
  - Biological Replication
  - Technical Replication

## **Enzyme Assay for Acid Phosphatase**

#### 6.6 Enzyme assay for acid phophatase activity

(Modified from (Dassa et al, 1982) : <u>http://www.jbc.org/cgi/reprint/257/12/6669</u>) **Protocols** 

#### **Prepare sample extract**

Inoculate overnight cultures of WT and *rpoS* mutant in 10 ml LB and growth at 37oC Collect cells by centrifugation at 4,000 rpm for 10 min Discard supernatant and resuspend pellet in 10 ml LB 20mM Phosphate buffer (pH7.0) (Pi buffer), ice cold. Spin down the cells at 4,000 rpm for 10 min Repeat steps 3 and 4 two more times Discard supernatant and resuspend pellet in 1 ml Pi buffer Transfer 0.5 ml to 15 ml Falcon blue cap tube, and save the other 0.5 ml on ice Sonicate until cultures turn clear (less than 5 min) Transfer crude extracts to 1.5 ml Eppendorf tubes and spin down at 13,000 rpm for 10 min Carefully transfer the supernatant to clean 1.5 ml tubes Quantify protein concentration using Bradford assay

(this has been done for you..)

### **Enzyme Assay for Acid Phosphatase**

#### 6.6 Enzyme assay for acid phophatase activity

(Modified from (Dassa et al, 1982) : http://www.jbc.org/cgi/reprint/257/12/6669)

#### Enzyme assay

- Prepare reaction buffer containing : 250 mM glycine/HCl buffer with 25 mM *p*-nitrophenylphosphate (PNPP)
- Prepare 3 tubes in , labelled with (1. Control 2. WT 3. rpoS)
- Add 0.5 ml reaction buffer into each tube
- Incubate all three tubes in water bath at 37oC for 2 min to equilibrate
- Start the reaction by adding 20 µl cell extract (if the protein concentration is higher than 1 mg/ml) of WT and rpoS to tube 2 and 3, respectively. Add 20 µl of Pi buffer to control tube 1
- Incubate at 37oC for 15 min and stop the reaction by adding 1 ml of 1N NaOH
- Transfer 1 ml reaction mixture to cuvette to measure absorbance at 410 nm

#### **Calculation of activity**

- One unit of enzyme is defined as the amount of acid phosphatase required to release 1 nmol of PNPP/min under the above defined conditions (At 25 mM, the no enzyme rate of PNPP hydrolysis was 0.49 nmol/min/ml )
- Alternatively, one unit of enzyme is defined as 1,000 X A<sub>410</sub> per minute per ml (Atlung et al. 1989)
- Molar extinction coefficient for p-nitrophenol = 17.700 x 10<sup>3</sup> M<sup>-1</sup> cm<sup>-1</sup> (this has been incorporated into the general spreadsheet I will give out

# **Calculations**

- Prepare a table beforehand
- Label Tubes before doing experiment
- Use a spreadsheet table to record results.
- Put spreadsheet in labbook (raw and calculated data)

# **Calculations**

- Prepare a table beforehand
- Label Tubes before doing experiment
- Use a spreadsheet table to record results.
- Put spreadsheet in labbook (raw and calculated data)

# **Calculations-Spreadsheet**

- The general spreadsheet I will post will be slightly modified from the following sheets given in class.
- Features
  - Formats numbers and decimals properly
  - Calculates data
  - Organizes information including experimental details
  - Provides some quality control indicators
  - Graphs protein standard curve

## **Protein..**

#### Bradford Protein Assay (MICROASSAY)

Date 5/8/2009 10:08

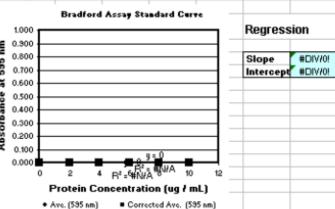
User

-add water to standard tubes in triplicate
 -add protein standard volume to each tube, use a fesh tip for each tube (total volume)

-add Protein dye reagent (200ul) to each tube: allow 15s between additions

-mix thoroughly with a vortex mixer

-incubate at least 5 min (preferably 30min) and read at 595 in the same order as protein reagent addition


Notes: (1) the "0" protein control as it is used for both the standard curve and for background subtraction (make sure calculated and measured values are in good agreement)

(2) make sure that all unknown values fall in the linear portion of the curve--if not, dilute and reassay

(3) if possible, use Corrected A595 (Average-blank0 values in the range 0.01 to 0.400

#### Standard Curve

| BSA Protein | Volume of   | ¥olume of  | Total | Abc At | 595 nm (ti  | (atcailai | Ave. (595 | Corrected     |
|-------------|-------------|------------|-------|--------|-------------|-----------|-----------|---------------|
| (ug/mL)     | Sample (ul) | ∀ater (ul) | (ul)  | ADS AC | ooo mii tei | ipiloatej | nm)       | Ave. (595 nm) |
| 0           | 0           |            | 800   |        |             |           |           |               |
| 2           |             |            | 800   |        |             |           |           |               |
| 4           |             |            | 800   |        |             |           |           |               |
| 6           |             |            | 800   |        |             |           |           |               |
| 8           |             |            | 800   |        |             |           |           |               |
| 10          |             |            | 800   |        |             |           |           |               |
|             |             |            |       |        |             |           |           |               |
|             |             |            |       |        |             |           |           |               |



#### **Unknown Samples**

| Sample | SampleID | <b>Volume of</b> | Yolume of Readings |        | js Average Average |  | Protein Conc. |         |   |           |            |           |           |         |
|--------|----------|------------------|--------------------|--------|--------------------|--|---------------|---------|---|-----------|------------|-----------|-----------|---------|
| Number |          | Sample           | Vater              | Rep #1 | Rep#2              |  | -blank        | (mg/mL) |   | - User in | put        |           |           |         |
| 1      |          |                  |                    |        |                    |  |               |         |   | - Spread  | sheet calo | ulated va | lues      |         |
| 2      |          |                  |                    |        |                    |  |               |         |   | - Protein | value wro  | ongchec   | k standar | d curve |
| 3      |          |                  |                    |        |                    |  |               |         |   |           |            |           |           |         |
| 4      |          |                  |                    |        |                    |  |               |         |   |           |            |           |           |         |
| 5      |          |                  |                    |        |                    |  |               |         |   |           |            |           |           |         |
| 6      |          |                  |                    |        |                    |  |               |         | 1 |           |            |           |           |         |
| 7      |          |                  |                    |        |                    |  |               |         |   |           |            |           |           |         |
| 8      |          |                  |                    |        |                    |  |               |         |   |           |            |           |           |         |

# Enzyme..

#### General Enzyme Calculation Template

Date 5/8/2009 10:03

-determine protein concentration of samples using ProteinMicroassay or ProteinMicrotiterPlateassay sheet -determine activity of samples using standard curve calibration assay below to obtain Total Units per mL -divide Total Units per mL by Protein (mg/ml) to obtain specific acitivity

#### A Enzyme assay

- 2. Prepare reaction buffer containing : 250 mM glycine/HCl buffer with 25 mM p-nitrophenylphosphate (PNPP)
- 3. Prepare 3 tubes, labelled with (1. Control 2. WT 3. rpoS)
- 4. Add 0.5 ml reaction buffer into each tube
- 5. Incubate all three tubes in water bath at 37oC for 2 min to equilibrate
- 6. Start the reaction by adding 20 µl cell extract (if the protein concentration is higher than 1 mg/ml) of V/T and rpoS to tube 2 and 3, respectively. Add 20 µl of Pi buffer to control tube 1
- 7. Incubate at 37oC for 15 min and stop the reaction by adding 1 ml of 1N NaOH
- 8. Transfer 1 ml reaction mixture to cuvette to measure absorbance at 410 nm

#### Notes : (1) make sure that you perform linearity checks

(2) use only determine unknown values with in the standard curve (do not extrapolate..dilute and re-assay instead)
(3) biological replicates usually yields standard errors of less than 10% (5% is quite good). If yours is higher check your technique...

|        |        | Protein concentration |      |      | tration |         |            |         |         | OD410_B | FADINGS      |          |           | R.asla  | etosidas    | e êctinite | (OD410)<br>Average |      |          |          | Error Flags |     |
|--------|--------|-----------------------|------|------|---------|---------|------------|---------|---------|---------|--------------|----------|-----------|---------|-------------|------------|--------------------|------|----------|----------|-------------|-----|
|        | Sample |                       |      |      |         | Average | Time of    |         |         | Sh      | are files, a | program, | or your d | esktopa | ny time, ai | nywhere.   | Average            | TIME | SPECIFIC | Standard |             |     |
| Sample | Type   | ¥olume                | Rep1 | Rep2 | Rep3    | Protein | Incubation |         | ep1     | Be      | ·p2          | Re       | ep3       | Rep 1   | Rep 2       | Rep 3      | OD410              | TIME | ACTIVITY | Error    | 5%          | 10% |
|        |        | ul                    |      |      |         |         | (min)      | sample1 | sample2 | sample1 | sample2      | sample1  | sample2   |         |             |            |                    |      |          |          |             |     |
| 1      |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 2      |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 3      |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 4      |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 5      |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 6      |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 7      |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 8      |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 9      |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 10     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 11     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 12     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 13     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 14     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 15     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 16     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 17     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 18     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 19     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |
| 20     |        |                       |      |      |         |         |            |         |         |         |              |          |           |         |             |            |                    |      |          |          |             |     |

# Enzyme..

|        |             |        | Protein concentration |      |      |                       |   |     | <b>OD410 R</b> | EADINGS |    |         | B-gala | (OD410) |       |                  |
|--------|-------------|--------|-----------------------|------|------|-----------------------|---|-----|----------------|---------|----|---------|--------|---------|-------|------------------|
| Sample | Sample Type | ¥olume | Bep1                  | Rep2 | Rep3 | Time of<br>Incubation | B | ep1 | B              | ep2     | Be | p3      | Bep 1  | Rep 2   | Rep 3 | Average<br>OD410 |
| -      |             | ul     |                       |      |      | (min)                 |   |     | sample1        | sample2 |    | sample2 |        |         |       |                  |
| 1      |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 2      |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 3      |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 4      |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 5      |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 6      |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 7      |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 8      |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 9      |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 10     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 11     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 12     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 13     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 14     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 15     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 16     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 17     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 18     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 19     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |
| 20     |             |        |                       |      |      |                       |   |     |                |         |    |         |        |         |       |                  |